Full metadata record

DC Field Value Language
dc.contributor.authorJin, Hyunwoo-
dc.contributor.authorKim, Kwang-Chon-
dc.contributor.authorSeo, Juhee-
dc.contributor.authorKim, Seong Keun-
dc.contributor.authorCheong, Byung-ki-
dc.contributor.authorKim, Jin-Sang-
dc.contributor.authorLee, Suyoun-
dc.date.accessioned2024-01-20T05:34:49Z-
dc.date.available2024-01-20T05:34:49Z-
dc.date.created2021-09-05-
dc.date.issued2015-11-
dc.identifier.issn2040-3364-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/124826-
dc.description.abstractWe investigated the magnetotransport properties of Bi2Te3 films grown on GaAs (001) substrate by a cost-effective metallo-organic chemical vapor deposition (MOCVD). We observed the remarkably high carrier mobility and the giant linear magnetoresistance (carrier mobility similar to 22 000 cm(2) V-1 s(-1), magnetoresistance similar to 750% at 1.8 K and 9 T for a 100 nm thick film) that depends on the film thickness. In addition, the Shubnikov-de Haas oscillation was observed, from which the effective mass was calculated to be consistent with the known value. From the thickness dependence of the Shubnikov-de Haas oscillation, it was found that a two dimensional electron gas with the conventional electron nature coexists with the topological Dirac fermion states and dominates the carrier transport in the Bi2Te3 film with thickness higher than 300 nm. These results are attributed to the intrinsic nature of Bi2Te3 in the high-mobility transport regime obtained by a deliberate choice of the substrate and the growth conditions.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subject3-DIMENSIONAL TOPOLOGICAL INSULATOR-
dc.subjectSURFACE-STATES-
dc.subjectOSCILLATIONS-
dc.subjectENHANCEMENT-
dc.subjectBI2SE3-
dc.subjectMETALS-
dc.subjectPHASE-
dc.titleHigh mobility, large linear magnetoresistance, and quantum transport phenomena in Bi2Te3 films grown by metallo-organic chemical vapor deposition (MOCVD)-
dc.typeArticle-
dc.identifier.doi10.1039/c5nr05491e-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANOSCALE, v.7, no.41, pp.17359 - 17365-
dc.citation.titleNANOSCALE-
dc.citation.volume7-
dc.citation.number41-
dc.citation.startPage17359-
dc.citation.endPage17365-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000363181600023-
dc.identifier.scopusid2-s2.0-84945156930-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlus3-DIMENSIONAL TOPOLOGICAL INSULATOR-
dc.subject.keywordPlusSURFACE-STATES-
dc.subject.keywordPlusOSCILLATIONS-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordPlusBI2SE3-
dc.subject.keywordPlusMETALS-
dc.subject.keywordPlusPHASE-
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE