In situ single step detection of exosome microRNA using molecular beacon

Authors
Lee, Ji HyeKim, Jeong AhKwon, Min HeeKang, Ji YoonRhee, Won Jong
Issue Date
2015-06
Publisher
ELSEVIER SCI LTD
Citation
BIOMATERIALS, v.54, pp.116 - 125
Abstract
In situ single step detection of microRNAs (miRNA) in a whole exosome has been developed as a novel diagnosis method that can be utilized for various diseases. Exosomes are small extracellular vesicles that contain biomarker miRNAs produced from their originating cells and are known to travel through the circulatory system. This makes exosomal miRNAs from the body fluids an attractive biomarker that can lead to a paradigm shift in the diagnosis of disease. However, current techniques, including real-time PCR analysis, are time-consuming and laborious, making them unsuitable for exosomal miRNA detection for diagnosis. Thus, the development of alternative methods is necessary. Herein, we have demonstrated that exosomal miRNAs can be detected directly using a nano-sized fluorescent oligonucleotide probe, molecular beacon. MiRNA-21 in exosomes from breast cancer cells were detected successfully by molecular beacons in a quantitative manner. Permeabilization by streptolysin 0 treatment further enhanced the delivery of molecular beacons into exosomes, giving significantly increased signals from target miRNAs. In addition, we selectively detected cancer cell-derived exosomal miRNA-21 among heterogeneous exosome mixtures and in human serum. The method developed in the article is simple, fast, and sensitive, so it will offer great opportunities for the high-throughput diagnosis and prognosis of diseases. (C) 2015 Elsevier Ltd. All rights reserved.
Keywords
MESSENGER-RNA; LIVING CELLS; MICROVESICLES; QUANTIFICATION; INHIBITION; BIOMARKERS; DELIVERY; TARGETS; MIRNAS; SERUM; MESSENGER-RNA; LIVING CELLS; MICROVESICLES; QUANTIFICATION; INHIBITION; BIOMARKERS; DELIVERY; TARGETS; MIRNAS; SERUM; Exosome; Molecular beacon; microRNA; Cancer; Diagnosis
ISSN
0142-9612
URI
https://pubs.kist.re.kr/handle/201004/125378
DOI
10.1016/j.biomaterials.2015.03.014
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE