Reactively sputtered nickel nitride as electrocatalytic counter electrode for dye- and quantum dot-sensitized solar cells

Authors
Kang, Jin SooPark, Min-AhKim, Jae-YupPark, Sun HaChung, Dong YoungYu, Seung-HoKim, JinPark, JongwooChoi, Jung-WooLee, Kyung JaeJeong, JuwonKo, Min JaeAhn, Kwang-SoonSung, Yung-Eun
Issue Date
2015-05-21
Publisher
NATURE PUBLISHING GROUP
Citation
SCIENTIFIC REPORTS, v.5
Abstract
Nickel nitride electrodes were prepared by reactive sputtering of nickel under a N-2 atmosphere at room temperature for application in mesoscopic dye- or quantum dot-sensitized solar cells. This facile and reliable method led to the formation of a Ni2N film with a cauliflower-like nanostructure and tetrahedral crystal lattice. The prepared nickel nitride electrodes exhibited an excellent chemical stability toward both iodide and polysulfide redox electrolytes. Compared to conventional Pt electrodes, the nickel nitride electrodes showed an inferior electrocatalytic activity for the iodide redox electrolyte; however, it displayed a considerably superior electrocatalytic activity for the polysulfide redox electrolyte. As a result, compared to dye- sensitized solar cells (DSCs), with a conversion efficiency (eta) = 7.62%, and CdSe-based quantum dot-sensitized solar cells (QDSCs, eta = 2.01%) employing Pt counter electrodes (CEs), the nickel nitride CEs exhibited a lower conversion efficiency (eta = 3.75%) when applied to DSCs, but an enhanced conversion efficiency (eta=2.80%) when applied to CdSe-based QDSCs.
Keywords
REDOX ELECTROLYTE; LOW-COST; EFFICIENCY; OXIDE; GRAPHENE; FILMS; PBS; REDOX ELECTROLYTE; LOW-COST; EFFICIENCY; OXIDE; GRAPHENE; FILMS; PBS; dye-sensitized; quantum dot-sensitized; nickel nitride; counter electrode
ISSN
2045-2322
URI
https://pubs.kist.re.kr/handle/201004/125429
DOI
10.1038/srep10450
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE