Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Jeong Ah | - |
dc.contributor.author | Kim, Hong Nam | - |
dc.contributor.author | Im, Sun-Kyoung | - |
dc.contributor.author | Chung, Seok | - |
dc.contributor.author | Kang, Ji Yoon | - |
dc.contributor.author | Choi, Nakwon | - |
dc.date.accessioned | 2024-01-20T07:33:24Z | - |
dc.date.available | 2024-01-20T07:33:24Z | - |
dc.date.created | 2021-09-05 | - |
dc.date.issued | 2015-03 | - |
dc.identifier.issn | 1932-1058 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/125725 | - |
dc.description.abstract | We present an engineered three-dimensional (3D) in vitro brain microvasculature system embedded within the bulk of a collagen matrix. To create a hydrogel template for the functional brain microvascular structure, we fabricated an array of microchannels made of collagen I using microneedles and a 3D printed frame. By culturing mouse brain endothelial cells (bEnd.3) on the luminal surface of cylindrical collagen microchannels, we reconstructed an array of brain microvasculature in vitro with circular cross-sections. We characterized the barrier function of our brain microvasculature by measuring transendothelial permeability of 40 kDa fluorescein isothiocyanate-dextran (Stoke's radius of similar to 4.5 nm), based on an analytical model. The transendothelial permeability decreased significantly over 3 weeks of culture. We also present the disruption of the barrier function with a hyperosmotic mannitol as well as a subsequent recovery over 4 days. Our brain microvasculature model in vitro, consisting of system-in-hydrogel combined with the widely emerging 3D printing technique, can serve as a useful tool not only for fundamental studies associated with blood-brain barrier in physiological and pathological settings but also for pharmaceutical applications. (C) 2015 AIP Publishing LLC. | - |
dc.language | English | - |
dc.publisher | AMER INST PHYSICS | - |
dc.subject | MICROFLUIDIC PLATFORM | - |
dc.subject | EXTRACELLULAR-MATRIX | - |
dc.subject | BARRIER | - |
dc.subject | TUMOR | - |
dc.subject | PERMEABILITY | - |
dc.subject | MICROVESSELS | - |
dc.subject | DIFFUSION | - |
dc.subject | MANNITOL | - |
dc.subject | GELS | - |
dc.subject | BBB | - |
dc.title | Collagen-based brain microvasculature model in vitro using three-dimensional printed template | - |
dc.type | Article | - |
dc.identifier.doi | 10.1063/1.4917508 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | BIOMICROFLUIDICS, v.9, no.2 | - |
dc.citation.title | BIOMICROFLUIDICS | - |
dc.citation.volume | 9 | - |
dc.citation.number | 2 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000353829200023 | - |
dc.identifier.scopusid | 2-s2.0-84927915647 | - |
dc.relation.journalWebOfScienceCategory | Biochemical Research Methods | - |
dc.relation.journalWebOfScienceCategory | Biophysics | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Physics, Fluids & Plasmas | - |
dc.relation.journalResearchArea | Biochemistry & Molecular Biology | - |
dc.relation.journalResearchArea | Biophysics | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article; Proceedings Paper | - |
dc.subject.keywordPlus | MICROFLUIDIC PLATFORM | - |
dc.subject.keywordPlus | EXTRACELLULAR-MATRIX | - |
dc.subject.keywordPlus | BARRIER | - |
dc.subject.keywordPlus | TUMOR | - |
dc.subject.keywordPlus | PERMEABILITY | - |
dc.subject.keywordPlus | MICROVESSELS | - |
dc.subject.keywordPlus | DIFFUSION | - |
dc.subject.keywordPlus | MANNITOL | - |
dc.subject.keywordPlus | GELS | - |
dc.subject.keywordPlus | BBB | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.