Full metadata record

DC Field Value Language
dc.contributor.authorKim, Jeong Ah-
dc.contributor.authorKim, Hong Nam-
dc.contributor.authorIm, Sun-Kyoung-
dc.contributor.authorChung, Seok-
dc.contributor.authorKang, Ji Yoon-
dc.contributor.authorChoi, Nakwon-
dc.date.accessioned2024-01-20T07:33:24Z-
dc.date.available2024-01-20T07:33:24Z-
dc.date.created2021-09-05-
dc.date.issued2015-03-
dc.identifier.issn1932-1058-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/125725-
dc.description.abstractWe present an engineered three-dimensional (3D) in vitro brain microvasculature system embedded within the bulk of a collagen matrix. To create a hydrogel template for the functional brain microvascular structure, we fabricated an array of microchannels made of collagen I using microneedles and a 3D printed frame. By culturing mouse brain endothelial cells (bEnd.3) on the luminal surface of cylindrical collagen microchannels, we reconstructed an array of brain microvasculature in vitro with circular cross-sections. We characterized the barrier function of our brain microvasculature by measuring transendothelial permeability of 40 kDa fluorescein isothiocyanate-dextran (Stoke's radius of similar to 4.5 nm), based on an analytical model. The transendothelial permeability decreased significantly over 3 weeks of culture. We also present the disruption of the barrier function with a hyperosmotic mannitol as well as a subsequent recovery over 4 days. Our brain microvasculature model in vitro, consisting of system-in-hydrogel combined with the widely emerging 3D printing technique, can serve as a useful tool not only for fundamental studies associated with blood-brain barrier in physiological and pathological settings but also for pharmaceutical applications. (C) 2015 AIP Publishing LLC.-
dc.languageEnglish-
dc.publisherAMER INST PHYSICS-
dc.subjectMICROFLUIDIC PLATFORM-
dc.subjectEXTRACELLULAR-MATRIX-
dc.subjectBARRIER-
dc.subjectTUMOR-
dc.subjectPERMEABILITY-
dc.subjectMICROVESSELS-
dc.subjectDIFFUSION-
dc.subjectMANNITOL-
dc.subjectGELS-
dc.subjectBBB-
dc.titleCollagen-based brain microvasculature model in vitro using three-dimensional printed template-
dc.typeArticle-
dc.identifier.doi10.1063/1.4917508-
dc.description.journalClass1-
dc.identifier.bibliographicCitationBIOMICROFLUIDICS, v.9, no.2-
dc.citation.titleBIOMICROFLUIDICS-
dc.citation.volume9-
dc.citation.number2-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000353829200023-
dc.identifier.scopusid2-s2.0-84927915647-
dc.relation.journalWebOfScienceCategoryBiochemical Research Methods-
dc.relation.journalWebOfScienceCategoryBiophysics-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryPhysics, Fluids & Plasmas-
dc.relation.journalResearchAreaBiochemistry & Molecular Biology-
dc.relation.journalResearchAreaBiophysics-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Proceedings Paper-
dc.subject.keywordPlusMICROFLUIDIC PLATFORM-
dc.subject.keywordPlusEXTRACELLULAR-MATRIX-
dc.subject.keywordPlusBARRIER-
dc.subject.keywordPlusTUMOR-
dc.subject.keywordPlusPERMEABILITY-
dc.subject.keywordPlusMICROVESSELS-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusMANNITOL-
dc.subject.keywordPlusGELS-
dc.subject.keywordPlusBBB-
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE