Modeling and optimization of a sono-assisted photocatalytic water treatment process via central composite design methodology
- Authors
- Soleymani, Ali Reza; Saien, Javad; Chin, Sungmin; Le, Hoang Anh; Park, Eunseuk; Jurng, Jon Gsoo
- Issue Date
- 2015-03
- Publisher
- ELSEVIER
- Citation
- PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, v.94, pp.307 - 314
- Abstract
- This work focuses on modeling and optimization of a sono-assisted photocatalytic decolorization process of a model pollutant, azo dye C.I. direct red 16 (DR16). In the process, a high temperature thermal decomposition nano synthesized titanium dioxide (TD-TiO2) was applied as photocatalyst. Central composite design (CCD) methodology was used for designing the experiments, modeling and optimization of the process. A quadratic model was established to describe dependency of the decolorization efficiency (DE), as the model response, to some effective operational parameters, i.e. the catalyst dosage, pH and the dye initial concentration. The ANOVA analysis confirmed that all of the variables have significant influence on the model response. Under the established optimum conditions, 92.4% DE was achieved after 45 min; however, to access desirable mineralization efficiency, the process should be continued up to 120 min. All withdrawn samples from the reaction media during the process showed no antibacterial activity, which indicates safety of the treated effluent for disposal into the environment. Also studies showed that the process proceeds via two parallel branches of photolysis and photocatalysis, where propagation of the ultrasonic waves into the reaction media plays a vital promoting role on the latter branch. (C) 2014 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
- Keywords
- WASTE-WATER; AQUEOUS-SOLUTION; METHYL-ORANGE; DEGRADATION; MINERALIZATION; TIO2; DECOMPOSITION; PHOTOREACTOR; PARAMETERS; REACTOR; WASTE-WATER; AQUEOUS-SOLUTION; METHYL-ORANGE; DEGRADATION; MINERALIZATION; TIO2; DECOMPOSITION; PHOTOREACTOR; PARAMETERS; REACTOR; Nano TiO2; Photocatalysis; Experimental design; Modeling; Optimization; Mineralization
- ISSN
- 0957-5820
- URI
- https://pubs.kist.re.kr/handle/201004/125729
- DOI
- 10.1016/j.psep.2014.07.004
- Appears in Collections:
- KIST Article > 2015
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.