Insights into autophagosome maturation revealed by the structures of ATG5 with its interacting partners

Authors
Kim, Jun HoeHong, Seung BeomLee, Jae KeunHan, SisuRoh, Kyung-HyeLee, Kyung-EunKim, Yoon KiChoi, Eui-JuSong, Hyun Kyu
Issue Date
2015-01
Publisher
TAYLOR & FRANCIS INC
Citation
AUTOPHAGY, v.11, no.1, pp.75 - 87
Abstract
Autophagy is a bulky catabolic process that responds to nutrient homeostasis and extracellular stress signals and is a conserved mechanism in all eukaryotes. When autophagy is induced, cellular components are sequestered within an autophagosome and finally degraded by subsequent fusion with a lysosome. During this process, the ATG12-ATG5 conjugate requires 2 different binding partners, ATG16L1 for autophagosome elongation and TECPR1 for lysosomal fusion. In our current study, we describe the crystal structures of human ATG5 in complex with an N-terminal domain of ATG16L1 as well as an internal AIR domain of TECPR1. Both binding partners exhibit a similar a-helical structure containing a conserved binding motif termed AFIM. Furthermore, we characterize the critical role of the C-terminal unstructured region of the AIR domain of TECPR1. These findings are further confirmed by biochemical and cell biological analyses. These results provide new insights into the molecular details of the autophagosome maturation process, from its elongation to its fusion with a lysosome.
Keywords
ATG12-ATG5 CONJUGATE; INFLUENZA HEMAGGLUTININ; SELECTIVE AUTOPHAGY; LC3 LIPIDATION; MEMBRANE; PROTEIN; MECHANISM; UBIQUITIN; COMPLEX; TARGETS; ATG12-ATG5 CONJUGATE; INFLUENZA HEMAGGLUTININ; SELECTIVE AUTOPHAGY; LC3 LIPIDATION; MEMBRANE; PROTEIN; MECHANISM; UBIQUITIN; COMPLEX; TARGETS; autophagy; ATG5; ATG12; ATG16; crystal structure; lysosome fusion; TECPR1
ISSN
1554-8627
URI
https://pubs.kist.re.kr/handle/201004/125913
DOI
10.4161/15548627.2014.984276
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE