Full metadata record

DC Field Value Language
dc.contributor.authorChoudhary, Nitin-
dc.contributor.authorPark, Juhong-
dc.contributor.authorHwang, Jun Yeon-
dc.contributor.authorChoi, Wonbong-
dc.date.accessioned2024-01-20T08:03:37Z-
dc.date.available2024-01-20T08:03:37Z-
dc.date.created2021-09-05-
dc.date.issued2014-12-20-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/125981-
dc.description.abstractTwo-dimensional MoS2 is a promising material for next-generation electronic and optoelectronic devices due to its unique electrical and optical properties including the band gap modulation with film thickness. Although MoS2 has shown excellent properties, wafer-scale production with layer control from single to few layers has yet to be demonstrated. The present study explored the large-scale and thickness-modulated growth of atomically thin MoS2 on Si/SiO2 substrates using a two-step sputtering-CVD method. Our process exhibited wafer-scale fabrication and successful thickness modulation of MoS2 layers from monolayer (0.72 nm) to multilayer (12.69 nm) with high uniformity. Electrical measurements on MoS2 field effect transistors (FETs) revealed a p-type semiconductor behavior with much higher field effect mobility and current on/off ratio as compared to previously reported CVD grown MoS2-FETs and amorphous silicon (a-Si) thin film transistors. Our results show that sputter-CVD is a viable method to synthesize large-area, high-quality, and layer-controlled MoS2 that can be adapted in conventional Si-based microfabrication technology and future flexible, high-temperature, and radiation hard electronics/optoelectronics.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectTHIN-FILM TRANSISTORS-
dc.subjectVAPOR-PHASE GROWTH-
dc.subjectLAYER MOS2-
dc.subjectLARGE-AREA-
dc.subjectATOMIC LAYERS-
dc.subjectHYDROTHERMAL SYNTHESIS-
dc.subjectMOLYBDENUM-DISULFIDE-
dc.subjectGRAPHENE-
dc.subjectMOBILITY-
dc.subjectEXFOLIATION-
dc.titleGrowth of Large-Scale and Thickness-Modulated MoS2 Nanosheets-
dc.typeArticle-
dc.identifier.doi10.1021/am506198b-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.6, no.23, pp.21215 - 21222-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume6-
dc.citation.number23-
dc.citation.startPage21215-
dc.citation.endPage21222-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000346326600077-
dc.identifier.scopusid2-s2.0-84917706298-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusTHIN-FILM TRANSISTORS-
dc.subject.keywordPlusVAPOR-PHASE GROWTH-
dc.subject.keywordPlusLAYER MOS2-
dc.subject.keywordPlusLARGE-AREA-
dc.subject.keywordPlusATOMIC LAYERS-
dc.subject.keywordPlusHYDROTHERMAL SYNTHESIS-
dc.subject.keywordPlusMOLYBDENUM-DISULFIDE-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusMOBILITY-
dc.subject.keywordPlusEXFOLIATION-
dc.subject.keywordAuthorMoS2-
dc.subject.keywordAuthorPVD-CVD-
dc.subject.keywordAuthorthin films-
dc.subject.keywordAuthorfield effect transistors-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE