SnO2 thin films grown by atomic layer deposition using a novel Sn precursor
- Authors
- Choi, Min-Jung; Cho, Cheol Jin; Kim, Kwang-Chon; Pyeon, Jung Joon; Park, Hyung-Ho; Kim, Hyo-Suk; Han, Jeong Hwan; Kim, Chang Gyoun; Chung, Taek-Mo; Park, Tae Joo; Kwon, Beomjin; Jeong, Doo Seok; Baek, Seung-Hyub; Kang, Chong-Yun; Kim, Jin-Sang; Kim, Seong Keun
- Issue Date
- 2014-11-30
- Publisher
- ELSEVIER
- Citation
- APPLIED SURFACE SCIENCE, v.320, pp.188 - 194
- Abstract
- SnO2 thin films were grown by atomic layer deposition (ALD) with dimethylamino-2-methy1-2-propoxytin(II) (Sn(dmamp)2) and 03 in a temperature range of 100-230 degrees C. The ALD window was found to be in the range of 100-200 degrees C. The growth per cycle of the films in the ALD window increased with temperature in the range from 0.018 to 0.042 nm/cycle. Above 230 degrees C, the self-limiting behavior which is a unique characteristic of ALD, was not observed in the growth because of the thermal decomposition of the Sn(dmamp)(2) precursor. The SnO2 films were amorphous in the ALD window and exhibited quite a smooth surface. Sn ions in all films had a SnO2 binding state corresponding to Sn4+ in SnO2. The concentration of carbon and nitrogen in the all SnO2 films was below the detection limit of the auger electron spectroscopy technique and a very small amount of carbon, nitrogen, and hydrogen was detected by secondary ions mass spectroscopy only. The impurity contents decreased with increasing the growth temperature. This is consistent with the increase in the density of the SnO2 films with respect to the growth temperature. The ALD process with Sn(dmamp)(2) and O-3 shows excellent conformality on a hole structure with an aspect ratio of 9. This demonstrates that the ALD process with Sn(dmamp)(2) and 03 is promising for growth of robust and highly pure SnO2 films. (C) 2014 Elsevier B.V. All rights reserved.
- Keywords
- TIN-OXIDE-FILMS; ELECTRICAL-PROPERTIES; FLUORINE; TIN-OXIDE-FILMS; ELECTRICAL-PROPERTIES; FLUORINE; Atomic layer deposition; SnO2; Sn(dmamp)(2); Self-limiting growth
- ISSN
- 0169-4332
- URI
- https://pubs.kist.re.kr/handle/201004/126089
- DOI
- 10.1016/j.apsusc.2014.09.054
- Appears in Collections:
- KIST Article > 2014
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.