3-Dimensionally disordered mesoporous silica (DMS)-containing mixed matrix membranes for CO2 and non-CO2 greenhouse gas separations
- Authors
- Park, Sunghwan; Bang, Joona; Choi, Jungkyu; Lee, Sang Hyup; Lee, Jung-Hyun; Lee, Jong Suk
- Issue Date
- 2014-11-05
- Publisher
- ELSEVIER SCIENCE BV
- Citation
- SEPARATION AND PURIFICATION TECHNOLOGY, v.136, pp.286 - 295
- Abstract
- The effect of 3-dimensionally disordered mesoporous silica (DMS) was investigated on the transport of two different glassy polymer matrices, 6FDA-DAM:DABA (3:2) and polysulfone (PSf). More specifically, single gas (i.e. N-2, CO2, CH4 and NF3) permeabilities of the mixed matrix membranes (MMMs) were characterized as a function of DMS volume fractions. Our permeation results demonstrated that both 6FDA-DAM:DABA (3:2)- and PSf-based MMMs with a nominal DMS weight fraction of 0.2 substantially improved all the single gas permeabilities mainly due to the diffusivity improvement. Such a significant increase in diffusivity is attributed to the 3-dimensionally interconnected pore structures of DMS particles. NF3, a missing greenhouse gas, exhibited the permeability improvement mechanism different from other gases. Besides, at the relatively lower DMS loading, difference in the extent of increase in permeability was observed for two different polymer cases. It was explained presumably by the effect of a high resistance zone-of-influence, or the rigidification of matrix polymer chains around inorganic particles. Our study suggests that 3-dimensional DMS particle-containing MMMs can provide a useful material platform for separating N-2/NF3, CO2/CH4, and CO2/N-2, by substantially increasing permeability, thereby cutting down the capital cost of membrane units. (C) 2014 Elsevier B.V. All rights reserved.
- Keywords
- GLASS-TRANSITION; NANOCOMPOSITE MEMBRANES; NITROGEN TRIFLUORIDE; POLYIMIDE MEMBRANES; ZEOLITE 4A; POLYSULFONE; PERMEABILITY; PERMEATION; MCM-41; POLYMERS; GLASS-TRANSITION; NANOCOMPOSITE MEMBRANES; NITROGEN TRIFLUORIDE; POLYIMIDE MEMBRANES; ZEOLITE 4A; POLYSULFONE; PERMEABILITY; PERMEATION; MCM-41; POLYMERS; Greenhouse gas separations; Mixed matrix membranes; 3-D disordered mesoporous silica
- ISSN
- 1383-5866
- URI
- https://pubs.kist.re.kr/handle/201004/126133
- DOI
- 10.1016/j.seppur.2014.09.016
- Appears in Collections:
- KIST Article > 2014
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.