Piezoelectric nanogenerators synthesized using KNbO3 nanowires with various crystal structures

Authors
Joung, Mi-RiXu, HaiboSeo, In-TaeKim, Dae-HyeonHur, JoonNahm, SahnKang, Chong-YunYoon, Seok-JinPark, Hyun-Min
Issue Date
2014-10
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY A, v.2, no.43, pp.18547 - 18553
Abstract
KNbO3 (KN) nanowires having a tetragonal structure or a polymorphic phase boundary (PPB) structure, which contains both tetragonal (P4mm) and orthorhombic (Amm2) structures, are formed at low temperatures. The presence of tetragonal and PPB KN nanowires is attributed to the existence of OH- and H2O defects. Further, the tetragonal and PPB KN nanowires change to orthorhombic KN nanowires in the temperature range between 300 and 400 degrees C owing to desorption of the lattice hydroxyl group. A composite consisting of polydimethylsiloxane (PDMS) and KN nanowires having a PPB structure shows large dielectric constant and low dielectric loss values of 9.2 and 0.5%, respectively, at 100 kHz. Moreover, a nanogenerator (NG) synthesized using the PPB KN nanowires exhibits the largest output voltage and current among NGs synthesized using the tetragonal or orthorhombic KN nanowires. In particular, the NG containing 0.7 g of PPB KN nanowires shows an output voltage of 10.5 V and an output current of 1.3 mu A; these values are among the highest ever reported for NGs synthesized using a lead-free composite. In addition, this NG exhibited the maximum output power and energy conversion efficiency, which were 4.5 mu W and 0.9%, respectively, for an external load of 1.0 M Omega.
Keywords
TITANATE FINE PARTICLES; NANOCOMPOSITE GENERATOR; LATTICE-DEFECTS; HYDROXYL GROUP; TITANATE FINE PARTICLES; NANOCOMPOSITE GENERATOR; LATTICE-DEFECTS; HYDROXYL GROUP
ISSN
2050-7488
URI
https://pubs.kist.re.kr/handle/201004/126276
DOI
10.1039/c4ta03551h
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE