Highly Efficient Copper-Zinc-Tin-Selenide ( CZTSe) Solar Cells by Electrodeposition

Authors
Jeon, Jong-OkLee, Kee DooOh, Lee SeulSeo, Se-WonLee, Doh-KwonKim, HonggonJeong, Jeung-hyunKo, Min JaeKim, BongSooSon, Hae JungKim, Jin Young
Issue Date
2014-04
Publisher
WILEY-V C H VERLAG GMBH
Citation
CHEMSUSCHEM, v.7, no.4, pp.1073 - 1077
Abstract
Highly efficient copper-zinc-tin-selenide (Cu2ZnSnSe4; CZTSe) thin-film solar cells are prepared via the electrodepostion technique. A metallic alloy precursor (CZT) film with a Cu-poor, Zn-rich composition is directly deposited from a single aqueous bath under a constant current, and the precursor film is converted to CZTSe by annealing under a Se atmosphere at temperatures ranging from 400 degrees C to 600 degrees C. The crystallization of CZTSe starts at 400 degrees C and is completed at 500 degrees C, while crystal growth continues at higher temperatures. Owing to compromises between enhanced crystallinity and poor physical properties, CZTSe thin films annealed at 550 degrees C exhibit the best and most-stable device performances, reaching up to 8.0% active efficiency; among the highest efficiencies for CZTSe thin-film solar cells prepared by electrodeposition. Further analysis of the electronic properties and a comparison with another state-of-the-art device prepared from a hydrazine-based solution, suggests that the conversion efficiency can be further improved by optimizing parameters such as film thickness, antireflection coating, MoSe2 formation, and p-n junction properties.
Keywords
CU2ZNSNS4 THIN-FILMS; SULFURIZATION; CU2ZNSNS4 THIN-FILMS; SULFURIZATION; electrochemistry; electrodeposition; energy conversion; solar cells; thin films
ISSN
1864-5631
URI
https://pubs.kist.re.kr/handle/201004/126913
DOI
10.1002/cssc.201301347
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE