Full metadata record

DC Field Value Language
dc.contributor.authorOh, H. J.-
dc.contributor.authorPark, S. J.-
dc.contributor.authorLim, J. Y.-
dc.contributor.authorCho, N. K.-
dc.contributor.authorSong, J. D.-
dc.contributor.authorLee, W.-
dc.contributor.authorLee, Y. J.-
dc.contributor.authorMyoung, J. M.-
dc.contributor.authorChoi, W. J.-
dc.date.accessioned2024-01-20T10:03:04Z-
dc.date.available2024-01-20T10:03:04Z-
dc.date.created2021-09-05-
dc.date.issued2014-04-
dc.identifier.issn1533-4880-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/126945-
dc.description.abstractNanometer scale thin InAs layer has been incorporated between Si (100) substrate and GaAs/Al0.3Ga0.7As multiple quantum well (MQW) nanostructure in order to reduce the defects generation during the growth of GaAs buffer layer on Si substrate. Observations based on atomic force microscopy (AFM) and transmission electron microscopy (TEM) suggest that initiation and propagation of defect at the Si/GaAs interface could be suppressed by incorporating thin (1 nm in thickness) InAs layer. Consequently, the microstructure and resulting optical properties improved as compared to the MOW structure formed directly on Si substrate without the InAs layer. It was also observed that there exists some limit to the desirable thickness of the InAs layer since the MOW structure having thicker InAs layer (4 nm-thick) showed deteriorated properties.-
dc.languageEnglish-
dc.publisherAMER SCIENTIFIC PUBLISHERS-
dc.subjectMOLECULAR-BEAM EPITAXY-
dc.subjectGROWTH-
dc.subjectSILICON-
dc.subjectGAAS-
dc.subjectSUPERLATTICES-
dc.subjectSEMICONDUCTORS-
dc.subjectISLANDS-
dc.titleFabrication of GaAs/Al0.3Ga0.7As Multiple Quantum Well Nanostructures on (100) Si Substrate Using a 1-nm InAs Relief Layer-
dc.typeArticle-
dc.identifier.doi10.1166/jnn.2014.8593-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, v.14, no.4, pp.2984 - 2989-
dc.citation.titleJOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY-
dc.citation.volume14-
dc.citation.number4-
dc.citation.startPage2984-
dc.citation.endPage2989-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000332226600042-
dc.identifier.scopusid2-s2.0-84897775646-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusMOLECULAR-BEAM EPITAXY-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusSILICON-
dc.subject.keywordPlusGAAS-
dc.subject.keywordPlusSUPERLATTICES-
dc.subject.keywordPlusSEMICONDUCTORS-
dc.subject.keywordPlusISLANDS-
dc.subject.keywordAuthorMolecular Beam Epitaxy-
dc.subject.keywordAuthorQuantum Wells-
dc.subject.keywordAuthorInAs Buffer Layer-
dc.subject.keywordAuthorSilicon Substrate-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE