Enhanced sensitivity of piezoelectric pressure sensor with microstructured polydimethylsiloxane layer

Authors
Choi, WookLee, JunwooYoo, Yong KyoungKang, SungchulKim, JinseokLee, Jeong Hoon
Issue Date
2014-03-24
Publisher
AMER INST PHYSICS
Citation
APPLIED PHYSICS LETTERS, v.104, no.12
Abstract
Highly sensitive detection tools that measure pressure and force are essential in palpation as well as real-time pressure monitoring in biomedical applications. So far, measurement has mainly been done by force sensing resistors and field effect transistor (FET) sensors for monitoring biological pressure and force sensing. We report a pressure sensor by the combination of a piezoelectric sensor layer integrated with a microstructured Polydimethylsiloxane (mu-PDMS) layer. We propose an enhanced sensing tool to be used for analyzing gentle touches without the external voltage source that is used in FET sensors, by incorporating a microstructured PDMS layer in a piezoelectric sensor. By measuring the directly induced electrical charge from the microstructure-enhanced piezoelectric signal, we observed a 3-fold increased sensitivity in a signal response. Both fast signal relaxation from force removal and wide dynamic range from 0.23 to 10 kPa illustrate the good feasibility of the thin film piezoelectric sensor for mimicking human skin. (C) 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4869816]
Keywords
FILM; TRANSDUCTION; FINGER; RUBBER; TOUCH; FILM; TRANSDUCTION; FINGER; RUBBER; TOUCH
ISSN
0003-6951
URI
https://pubs.kist.re.kr/handle/201004/126985
DOI
10.1063/1.4869816
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE