Defect-Assisted Heavily and Substitutionally Boron-Doped Thin Multiwalled Carbon Nanotubes Using High-Temperature Thermal Diffusion

Authors
Kim, Yoong AhmAoki, ShuntaFujisawa, KazunoriKo, Yong-IlYang, Kap-SeungYang, Cheol-MinJung, Yong ChaeHayashi, TakuyaEndo, MorinobuTerrones, MauricioDresselhaus, Mildred S.
Issue Date
2014-02-27
Publisher
American Chemical Society
Citation
The Journal of Physical Chemistry C, v.118, no.8, pp.4454 - 4459
Abstract
Carbon nanotubes have shown great potential as conductive fillers in various composites, macro-assembled fibers, and transparent conductive films due to their superior electrical conductivity. Here, we present an effective defect engineering strategy for improving the intrinsic electrical conductivity of nanotube assemblies by thermally incorporating a large number of boron atoms into substitutional positions within the hexagonal framework of the tubes. It was confirmed that the defects introduced after vacuum ultraviolet and nitrogen plasma treatments facilitate the incorporation of a large number of boron atoms (ca. 0.496 atomic %) occupying the trigonal sites on the tube sidewalls during the boron doping process, thus eventually increasing the electrical conductivity of the carbon nanotube film. Our approach provides a potential solution for the industrial use of macro-structured nanotube assemblies, where properties, such as high electrical conductance, high transparency, and lightweight, are extremely important.
Keywords
CHEMICAL-VAPOR-DEPOSITION; ELECTRONIC-STRUCTURE; RAMAN-SPECTROSCOPY; HEAT-TREATMENT; CONDUCTIVITY; PERFORMANCE; GRAPHITE; FIBERS; FILMS; CHEMICAL-VAPOR-DEPOSITION; ELECTRONIC-STRUCTURE; RAMAN-SPECTROSCOPY; HEAT-TREATMENT; CONDUCTIVITY; PERFORMANCE; GRAPHITE; FIBERS; FILMS; Boron-doped; MWNT; Thermal Diffusion
ISSN
1932-7447
URI
https://pubs.kist.re.kr/handle/201004/127076
DOI
10.1021/jp410732r
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE