Bioinspired adhesive coating on PET film for antifouling surface modification
- Authors
- Heo, Seong-beom; Jeon, Young-Sil; Kim, Seung Il; Kim, Soo Hyun; Kim, Ji-Heung
- Issue Date
- 2014-02
- Publisher
- POLYMER SOC KOREA
- Citation
- MACROMOLECULAR RESEARCH, v.22, no.2, pp.203 - 209
- Abstract
- One of the most common approaches to preparing antifouling surfaces is the immobilization of poly(ethylene glycol), which is known as PEGylation. In addition, the catechol functional group of dopamine (3,4-dihydroxyphenethylamine) has the capacity to create a strong coordinate bond with inorganic and organic surfaces in an aqueous environment. We synthesized novel polyaspartamide derivatives containing poly(ethylene glycol) and catechol pendant groups, and the same polymers in a pH-controlled aqueous solution were successfully employed to modify a poly(ethylene terephthalate) (PET) surface using a simple immersion method. Contact angle measurements, X-ray photoelectron spectroscopy, attenuated total reflectance-infrared spectroscopy, and atomic force microscopy were used to verify the surface coating on the PET substrate. Also, the cytotoxicity and antifouling properties were evaluated by protein adsorption and platelet adhesion tests of the coated materials. This biocompatible polymer has potential as an adhesive coating and for the surface modification of various biomaterials.
- Keywords
- POLYMER-PROTEIN INTERACTIONS; POLYETHYLENE-GLYCOL; POLY(ETHYLENE GLYCOL); BACTERIAL ADHESION; GENERATION; RESISTANCE; INFECTION; BRUSHES; POLYMER-PROTEIN INTERACTIONS; POLYETHYLENE-GLYCOL; POLY(ETHYLENE GLYCOL); BACTERIAL ADHESION; GENERATION; RESISTANCE; INFECTION; BRUSHES; antifouling; surface modification; PEGylation; catechol group; PET film
- ISSN
- 1598-5032
- URI
- https://pubs.kist.re.kr/handle/201004/127170
- DOI
- 10.1007/s13233-014-2033-x
- Appears in Collections:
- KIST Article > 2014
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.