Simultaneous synthesis and rapid consolidation of a nanocrystalline Mg0.6Al0.8Ti1.6O5 by high-frequency induction heating and its mechanical properties

Authors
Shon, In-JinDu, Song-LeeKang, Hyun-SuDoh, Jung-MannYoon, Jin-Kook
Issue Date
2014-01
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
MATERIALS RESEARCH BULLETIN, v.49, pp.584 - 588
Abstract
A single-step synthesis and consolidation of nanostructured Mg0.6Al0.8Ti1.6O5 was achieved by highfrequency induction heating using the stoichometric mixture of MgO, Al2O3 and TiO2 powders. Before sintering, the powder mixture was high-energy ball milled for 10 h. From the milled powder mixture, a highly dense nanostructured Mg0.6Al0.8Ti1.6O5 compound could be obtained within one minute under the simultaneous application of 80 MPa pressure and an induced current. The advantage of this process is that it allows an instant densification to the near theoretical density while sustaining the nanosized microstructure of raw powders. The sintering behavior, microstructure and mechanical properties of Mg0.6Al0.8Ti1.6O5 were evaluated. (C) 2013 Elsevier Ltd. All rights reserved.
Keywords
FABRICATION; COMPOSITE; FABRICATION; COMPOSITE; Nanostructures; Ceramics; X-ray diffraction; Mechanical properties; Microstructure
ISSN
0025-5408
URI
https://pubs.kist.re.kr/handle/201004/127288
DOI
10.1016/j.materresbull.2013.09.042
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE