Supercritical alcohols as solvents and reducing agents for the synthesis of reduced graphene oxide

Authors
Seo, MyoungdoYoon, DoyeonHwang, Kyo SeonKang, Jeong WonKim, Jaehoon
Issue Date
2013-11
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
CARBON, v.64, pp.207 - 218
Abstract
We report on a facile, simple, and green graphene oxide (GO) reduction method based on a supercritical alcohol approach. The influence over the chemical, thermal, morphological, and textural properties of reduced graphene oxides (RGOs) of five different alcohols in their supercritical conditions - methanol, ethanol, 1-propanol, 2-propanol, and 1-butanol - was investigated in detail. Although the thermal stabilities and Fourier-transform infrared spectra of RGOs produced using the different alcohols are very similar, a substantial difference in the carbon-to-oxygen ratios measured by X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller surface areas are observed. The RGO produced using supercritical ethanol exhibited a much higher carbon-to-oxygen ratio of 14.4 and a much larger surface area of 203 m(2)/g compared with that produced using the other supercritical alcohols. Raman spectra showed that the RGOs produced using supercritical ethanol and supercritical 2-propanol retained more of the graphitic structure. X-ray diffraction analysis revealed that RGOs produced using supercritical 1-propanol and supercritical 1-butanol retained at least two different interlayer spacings. The deoxygenation mechanism of GO in supercritical ethanol is proposed based on gas and liquid product analysis. Crown Copyright (C) 2013 Published by Elsevier Ltd. AU rights reserved.
Keywords
PROMOTED H-DONATION; GRAPHITE OXIDE; THERMAL REDUCTION; COAL CONVERSION; GREEN REDUCTION; DONOR MEDIA; VITAMIN-C; STATE; NANOPARTICLES; EXFOLIATION; PROMOTED H-DONATION; GRAPHITE OXIDE; THERMAL REDUCTION; COAL CONVERSION; GREEN REDUCTION; DONOR MEDIA; VITAMIN-C; STATE; NANOPARTICLES; EXFOLIATION; Reduced graphene oxide
ISSN
0008-6223
URI
https://pubs.kist.re.kr/handle/201004/127476
DOI
10.1016/j.carbon.2013.07.053
Appears in Collections:
KIST Article > 2013
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE