Variation in the fluorescence intensity of thermally-exposed bacterial bioaerosols

Authors
Jung, Jae HeeLee, Jung Eun
Issue Date
2013-11
Publisher
ELSEVIER SCI LTD
Citation
JOURNAL OF AEROSOL SCIENCE, v.65, pp.101 - 110
Abstract
This study describes the real-time fluorescence characteristics of bacterial bioaerosols (Escherichia coli and Bacillus subtilis) thermally inactivated to produce various degrees of cellular culturability. Bacterial bioaerosols were exposed to various temperatures for very short times in a thermal electric tube furnace and then passed into an aerosol fluorescence measurement system that measured the ultraviolet (UV) light-induced fluorescence intensity of airborne particles in real time. The fluorescence of particles in the optical sensing zone was continuously measured with two photomultiplier tubes (PMTs) equipped with optical filters to detect radiation in the UV and visible (Vis) bands. The results showed that both UV- and Vis-fluorescence intensities decreased with increasing deactivation temperature. Also, the ratio of UV- to Vis-fluorescence decreased with increasing temperature for each bacterial bioaerosol. Under the same experimental conditions, we found that the airborne aromatic amino acids (L-tryptophan and [tyrosine) and ovalbumin particles showed similar reduction trends in their fluorescence characteristics, compared with the test bacterial bioaerosols. These results provide basic information on the feasibility of intrinsic fluorescence measurements for real-time characterization of biological particles. (c) 2013 Elsevier Ltd. All rights reserved.
Keywords
REAL-TIME MEASUREMENT; AERODYNAMIC PARTICLE SIZER; BACILLUS-SUBTILIS SPORES; ESCHERICHIA-COLI; FUNGAL BIOAEROSOLS; AIRBORNE BACTERIA; EMISSION-SPECTRA; CERAMIC HEATER; INACTIVATION; UVAPS; REAL-TIME MEASUREMENT; AERODYNAMIC PARTICLE SIZER; BACILLUS-SUBTILIS SPORES; ESCHERICHIA-COLI; FUNGAL BIOAEROSOLS; AIRBORNE BACTERIA; EMISSION-SPECTRA; CERAMIC HEATER; INACTIVATION; UVAPS; Real-time detection; Fluorescence; Bioaerosol; Aerosol fluorescence sensor
ISSN
0021-8502
URI
https://pubs.kist.re.kr/handle/201004/127527
DOI
10.1016/j.jaerosci.2013.07.008
Appears in Collections:
KIST Article > 2013
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE