Cancer cell-specific photoactivity of pheophorbide a-glycol chitosan nanoparticles for photodynamic therapy in tumor-bearing mice

Authors
Oh, In-hyeokMin, Hyun SuLi, LiThanh Huyen TranLee, Yong-kyuKwon, Ick ChanChoi, KuiwonKim, KwangmeyungHuh, Kang Moo
Issue Date
2013-09
Publisher
ELSEVIER SCI LTD
Citation
BIOMATERIALS, v.34, no.27, pp.6454 - 6463
Abstract
We designed a cancer-cell specific photosensitizer nano-carrier by synthesizing pheophorbide a (PheoA) conjugated glycol chitosan (GC) with reducible disulfide bonds (PheoA-ss-GC). The amphiphilic PheoA-ss-GC conjugates self-assembled in aqueous condition to form core-shell structured nanoparticles (PheoA-ss-CNPs) with good colloidal stability and switchable photoactivity. The photoactivity of PheoA-ss-CNPs in an aqueous environment was greatly suppressed by the self-quenching effect, which enabled the PheoA-ss-CNPs to remain photo-inactive and in a quenched state. However, after the cancer cell-specific uptake, the nanoparticular structure instantaneously dissociated by reductive cleavage of the disulfide linkers, followed by an efficient dequenching process. Compared to non-reducible PheoA-conjugated GC-NPs with stable amide linkages (PheoA-CNPs), PheoA-ss-CNPs rapidly restored their photoactivity in response to intracellular reductive conditions, thus presenting higher cytotoxicity with light treatment. In addition, the PheoA-ss-CNPs presented prolonged blood circulation in vivo compared to free PheoA, demonstrating enhanced tumor specific targeting behavior through the enhanced permeation and retention (EPR) effect. The enhanced tumor accumulation of PheoA-ss-CNPs enabled tumor therapeutic efficacy that was more efficient than free PheoA in tumor-bearing mice. Based on the enhanced intracellular release for cytosolic high dose and switchable photoactivity mechanism for reduced side effects, these results suggest that PheoA-ss-CNPs have good potential for photodynamic therapy (PDT) in cancer treatment. (C) 2013 Elsevier Ltd. All rights reserved.
Keywords
INTRACELLULAR DRUG; TARGETED DELIVERY; IN-VITRO; PHOTOSENSITIZER; CONJUGATE; POLYMERS; INTRACELLULAR DRUG; TARGETED DELIVERY; IN-VITRO; PHOTOSENSITIZER; CONJUGATE; POLYMERS; Cancer-cell specific photoactivity; Switchable photoactivity; Pheophorbide a; Glycol chitosan nanoparticles; Photodynamic therapy
ISSN
0142-9612
URI
https://pubs.kist.re.kr/handle/201004/127706
DOI
10.1016/j.biomaterials.2013.05.017
Appears in Collections:
KIST Article > 2013
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE