Facile Synthesis of p-type Perovskite SrTi0.65Fe0.35O3 Nanofibers Prepared by Electrospinning and Their Oxygen-Sensing Properties

Authors
Choi, Seung-HoonChoi, Seon-JinMin, Byoung KounLee, Woon YoungPark, Jin SeongKim, Il-Doo
Issue Date
2013-05
Publisher
WILEY-V C H VERLAG GMBH
Citation
MACROMOLECULAR MATERIALS AND ENGINEERING, v.298, no.5, pp.521 - 527
Abstract
Quaternary p-type SrTi0.65Fe0.35O3 (STFO) nanofibers with diameters ranging from 70 to 500nm were synthesized via electrospinning and subsequent calcination at 750 degrees C. The STFO fibers showed single perovskite structure and polycrystalline fiber morphologies composed of small nanocrystallites in the range of 1012nm. The semiconducting oxygen sensor using STFO fiber network exhibited a wide temperature-independence of resistance (approximate to 12 +/- 4 k) that exceeded the range of 600950 degrees C, high oxygen response (${{R_{{\rm O}_{{\rm 2}} } } \mathord{\left/ {\vphantom {{R_{{\rm O}_{{\rm 2}} } } {R_{{\rm N}_{{\rm 2}} } }}} \right. \kern-\nulldelimiterspace} {R_{{\rm N}_{{\rm 2}} } }}$=4.08 at 20% O2), and a fast response time (t=2.1s at 20% O2) upon cyclic oxygen exposure. These superior properties were attributed to the high surface-to-volume ratio of STFO fiber network and the effective diffusion of oxygen gas onto highly porous STFO-sensing layers.
Keywords
SENSORS; SENSORS; electrospinning; nanofibers; oxygen sensors; SrTi0; 65Fe0; 35O3
ISSN
1438-7492
URI
https://pubs.kist.re.kr/handle/201004/128097
DOI
10.1002/mame.201200375
Appears in Collections:
KIST Article > 2013
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE