Synthesis and properties of an atomically thin carbon nanosheet similar to graphene and its promising use as an organic thin film transistor

Authors
Joh, Han-IkLee, SunghoKim, Tae-WookHwang, Sang YoupHahn, Jae Ryang
Issue Date
2013-04
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
CARBON, v.55, pp.299 - 304
Abstract
We synthesize an atomically thin carbon nanosheet (CNS) analogous to graphene with properties suitable for an organic thin film transistor (OTFT). The synthesis of graphene by chemical vapor deposition has serious drawbacks such as wrinkles, grain boundaries, and defects due to catalyst removal and transfer process. Here the CNS is directly synthesized on a silicon wafer by heat-treatment of spin-coated polyacrylonitrile and shows a higher electrical conductivity (>1600 S cm(-1)) than that of chemically converted graphene. The CNS on glass, transferred from a silicon wafer, exhibits approximately 92% optical transmittance. We have used our CNS as the electrodes of OTFTs, and recorded a mobility (0.25-0.35 cm(2)V(-1)s(-1)) that exceeds that of gold electrodes (0.2-0.25 cm(2)V(-1)s(-1)) (C) 2013 Elsevier Ltd. All rights reserved.
Keywords
FEW-LAYER GRAPHENE; LARGE-AREA; GROWTH; METAL; SAPPHIRE; OXIDE; FEW-LAYER GRAPHENE; LARGE-AREA; GROWTH; METAL; SAPPHIRE; OXIDE; graphene; carbon nanosheet; PAN; OTFT; stabilization; Catalyst-free process; transparent
ISSN
0008-6223
URI
https://pubs.kist.re.kr/handle/201004/128189
DOI
10.1016/j.carbon.2012.12.067
Appears in Collections:
KIST Article > 2013
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE