Synthesis of stimuli-responsive PEO-based triblock copolymers and their applications for preparation of iron oxide nanoparticles
- Authors
- Nam, Joo Hyun; Choi, Woo Seok; Lee, Jae Hyeok; Kwon, Nan Hyun; Kang, Ho-Jung; Lee, Jae Yeol; Kim, Sehoon; Kim, Jungahn
- Issue Date
- 2012-11
- Publisher
- POLYMER SOC KOREA
- Citation
- MACROMOLECULAR RESEARCH, v.20, no.11, pp.1173 - 1180
- Abstract
- In this paper, the important and useful method for manufacturing superparamagnetic iron oxide nanoparticles stabilized by water-soluble poly(ethylene oxide) (PEO)-based triblock copolymers showing stimuli-responsive phase transition is introduced. Triblock copolymers, such as poly(ethylene oxide-b-N-vinylimidazole-b-3-(methacrylamino)phenylboronic acid) (PEO-b-PVIm-b-PMAPBA), poly(ethylene oxide-b-N-vinylpyrrolidone-b-3-(methacrylamino)phenylboronic acid) (PEO-b-PVP-b-PMAPBA), and poly(ethylene oxide-b-N-vinylimidazoleb-maleic acid) (PEO-b-PVIm-b-PMAc), were synthesized using the sequential monomer addition method via reversible addition fragmentation chain transfer (RAFT) radical block copolymerizations of the corresponding monomers, using PEO-based RAFT agent. After complete polymerization of N-vinylimidazole or N-vinylpyrrolidone in dimethylformamide (DMF) at 110 degrees C, 3-(methacrylamino)phenylboronic acid (MAPBA) was polymerized in DMF at 90 degrees C for 24 h, and N-phenylmaleimide was polymerized in dimethylsulfoxide (DMSO) at 110 degrees C for 28 h. All the block copolymers were water-soluble and efficient enough to stabilize the surface of nano-sized iron oxide particles in water. The nanoparticles were stable in neutral aqueous media for at least one month. The resulting products were characterized by a combination of H-1 nuclear magnetic resonance spectroscopy (NMR), size exclusion chromatography, transmission electron microscopy (TEM), electron diffraction pattern, and phase transition behavior of the block copolymers using UV/visible spectrophotometer.
- Keywords
- BLOCK-COPOLYMERS; PEGYLATION; BINDING; SPIONS; BLOCK-COPOLYMERS; PEGYLATION; BINDING; SPIONS; water-soluble triblock copolymers; RAFT radical copolymerization; PEO-based RAFT agent; phase transition behavior; iron oxide nanoparticles
- ISSN
- 1598-5032
- URI
- https://pubs.kist.re.kr/handle/201004/128684
- DOI
- 10.1007/s13233-012-0173-4
- Appears in Collections:
- KIST Article > 2012
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.