Improved Electrical Conductivity of a Carbon Nanotube Mat Composite Prepared by In-Situ Polymerization and Compression Molding with Compression Pressure

Authors
Noh, Ye JiKim, Han SangKim, Seong Yun
Issue Date
2012-10
Publisher
SPRINGER JAPAN KK
Citation
CARBON LETTERS, v.13, no.4, pp.243 - 247
Abstract
A fabrication method to improve the processability of thermoplastic carbon nanotube (CNT) mat composites was investigated by using in-situ polymerizable and low viscous cyclic butylene terephthalate oligomers. The electrical conductivity of the CNT mat composites strongly depended on the compression pressure, and the trend can be explained in terms of two cases, low and high compression pressure, respectively. High CNT mat content in the CNT mat composites and the surface of the CNT mat composites with fully contacted CNTs was achieved under high compression pressure, and direct contact between four probes and the surface of the CNT mat composites with fully contacted CNTs gave resistance of 2.1 Omega. In this study the maximum electrical conductivity of the CNT mat composites, obtained under a maximum applied compression pressure of 27 MPa, was 11 904 S m(-1), where the weight fraction of the CNT mat was 36.5%.
Keywords
MECHANICAL-PROPERTIES; INTERCALATION; PAPER; MECHANICAL-PROPERTIES; INTERCALATION; PAPER; carbon nanotube mat; composite; cyclic butylene terephthalate; electrical conductivity
ISSN
1976-4251
URI
https://pubs.kist.re.kr/handle/201004/128837
DOI
10.5714/CL.2012.13.4.243
Appears in Collections:
KIST Article > 2012
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE