Full metadata record

DC Field Value Language
dc.contributor.authorNugroho, Agung-
dc.contributor.authorKim, Su Jin-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorKim, Jaehoon-
dc.date.accessioned2024-01-20T14:02:21Z-
dc.date.available2024-01-20T14:02:21Z-
dc.date.created2021-09-05-
dc.date.issued2012-09-01-
dc.identifier.issn0013-4686-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/128880-
dc.description.abstractNanosized and highly crystalline spinel lithium titanium oxide (Li4Ti5O12, LTO) particles are synthesized in supercritical water. The effects of various synthesis conditions - feed concentration, reaction time, and calcination - on the particle properties, including particle size, surface area, particle morphology, phase purity, and crystallinity, are carefully analyzed. Phase-pure LTO particles are obtained with a long reaction time of 6h in supercritical water at 400 degrees C and 300 bar without subsequent calcination, while the anatase TiO2 impurity phase is detected at shorter reaction times of 5 min to 2 h. Particles synthesize in supercritical water with subsequent calcination at a relatively low temperature of 700 degrees C exhibit the highly crystalline LTO phase. Based on the analytical results using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and X-ray diffraction (XRD), an LTO formation mechanism in supercritical water is proposed. LTO particles prepare in supercritical water with subsequent calcination exhibit excellent long-term cyclability and high-rate performance. The discharge capacity after 400 cycles at 1C is 117.2 mAh g(-1), which is approximately 80% of the initial discharge capacity (147.1 mAh g(-1)), and the discharge capacity at 10C is 100.5 mAh g(-1). These electrochemical performances are significantly better than those of uncalcinated LTO synthesize in supercritical water and solid-state synthesize LTO. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectCONTINUOUS HYDROTHERMAL SYNTHESIS-
dc.subjectNANOSIZED LI4TI5O12-
dc.subjectFACILE SYNTHESIS-
dc.subjectSPINEL-
dc.subjectPARTICLES-
dc.subjectELECTRODES-
dc.subjectINSERTION-
dc.subjectNANOPARTICLES-
dc.subjectCELLS-
dc.subjectANODE-
dc.titleSynthesis of Li4Ti5O12 in supercritical water for Li-ion batteries: Reaction mechanism and high-rate performance-
dc.typeArticle-
dc.identifier.doi10.1016/j.electacta.2012.06.060-
dc.description.journalClass1-
dc.identifier.bibliographicCitationELECTROCHIMICA ACTA, v.78, pp.623 - 632-
dc.citation.titleELECTROCHIMICA ACTA-
dc.citation.volume78-
dc.citation.startPage623-
dc.citation.endPage632-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000308259500084-
dc.identifier.scopusid2-s2.0-84864280976-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.type.docTypeArticle-
dc.subject.keywordPlusCONTINUOUS HYDROTHERMAL SYNTHESIS-
dc.subject.keywordPlusNANOSIZED LI4TI5O12-
dc.subject.keywordPlusFACILE SYNTHESIS-
dc.subject.keywordPlusSPINEL-
dc.subject.keywordPlusPARTICLES-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusINSERTION-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusCELLS-
dc.subject.keywordPlusANODE-
dc.subject.keywordAuthorLithium titanium oxide-
dc.subject.keywordAuthorSupercritical water-
dc.subject.keywordAuthorAnode materials-
dc.subject.keywordAuthorLithium secondary batteries-
Appears in Collections:
KIST Article > 2012
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE