Bioinspired steel surfaces with extreme wettability contrast

Authors
Her, Eun KyuKo, Tae-JunLee, Kwang-RyeolOh, Kyu HwanMoon, Myoung-Woon
Issue Date
2012-09
Publisher
ROYAL SOC CHEMISTRY
Citation
NANOSCALE, v.4, no.9, pp.2900 - 2905
Abstract
The exterior structures of natural organisms have continuously evolved by controlling wettability, such as the Namib Desert beetle, whose back has hydrophilic/hydrophobic contrast for water harvesting by mist condensation in dry desert environments, and some plant leaves that have hierarchical micro/nanostructures to collect or repel liquid water. In this work, we have provided a method for wettability contrast on alloy steels by both nano-flake or needle patterns and tuning of the surface energy. Steels were provided with hierarchical micro/nanostructures of Fe oxides by fluorination and by a subsequent catalytic reaction of fluorine ions on the steel surfaces in water. A hydrophobic material was deposited on the structured surfaces, rendering superhydrophobicity. Plasma oxidization induces the formation of superhydrophilic surfaces on selective regions surrounded by superhydrophobic surfaces. We show that wettability contrast surfaces align liquid water within patterned hydrophilic regions during the condensation process. Furthermore, this method could have a greater potential to align other liquids or living cells.
Keywords
SUPERHYDROPHOBIC SURFACES; DESERT BEETLE; LOTUS; WATER; SUPERHYDROPHOBIC SURFACES; DESERT BEETLE; LOTUS; WATER; nanopattern; steel; CF4; water immersion test; superhydrophobic; biomimetic
ISSN
2040-3364
URI
https://pubs.kist.re.kr/handle/201004/128951
DOI
10.1039/c2nr11934j
Appears in Collections:
KIST Article > 2012
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE