Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hoang Anh Le | - |
dc.contributor.author | Le Thuy Linh | - |
dc.contributor.author | Chin, Sungmin | - |
dc.contributor.author | Jurng, Jongsoo | - |
dc.date.accessioned | 2024-01-20T14:31:32Z | - |
dc.date.available | 2024-01-20T14:31:32Z | - |
dc.date.created | 2021-09-05 | - |
dc.date.issued | 2012-07 | - |
dc.identifier.issn | 0032-5910 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/129087 | - |
dc.description.abstract | TiO2-anatase is obtained directly by chemical vapor condensation (T-95), or from a commercial catalyst (P-25). TiO2 nanoparticles and coconut shell activated carbon. CSAC, are mixed with mass ratios of 1/1 (CT-1, CF-1) and 2/1 (CT-2, CP-2), respectively. These nanomaterials are characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area, and X-ray photoelectron spectroscopy (XPS). The catalyst obtained from the CVC process is better than the commercial one in a comparison of the physico-chemical properties, and was also confirmed by the photocatalytic degradation of methylene blue (MB). The composited catalysts (CSAC/TiO2) are better than CSAC or naked TiO2 only. At the same TiO2 to CSAC mass ratio, the MB removal efficiencies followed the trend: CT-2>CT-1>CP-2>CP-1>T-95>CSAC>P-25. Furthermore, the advantages of the CT-2 catalyst revealed its practical potential to treat pollutants. (C) 2012 Elsevier B.V. All rights reserved. | - |
dc.language | English | - |
dc.publisher | ELSEVIER SCIENCE BV | - |
dc.subject | TIO2 NANOWIRE ARRAYS | - |
dc.subject | THERMAL-DECOMPOSITION | - |
dc.subject | TITANIUM-DIOXIDE | - |
dc.subject | ANATASE | - |
dc.subject | NANOPARTICLES | - |
dc.subject | SURFACE | - |
dc.subject | OPTIMIZATION | - |
dc.subject | FABRICATION | - |
dc.subject | HYDROLYSIS | - |
dc.subject | OXIDATION | - |
dc.title | Photocatalytic degradation of methylene blue by a combination of TiO2-anatase and coconut shell activated carbon | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.powtec.2012.04.004 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | POWDER TECHNOLOGY, v.225, pp.167 - 175 | - |
dc.citation.title | POWDER TECHNOLOGY | - |
dc.citation.volume | 225 | - |
dc.citation.startPage | 167 | - |
dc.citation.endPage | 175 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000305380400022 | - |
dc.identifier.scopusid | 2-s2.0-84861186098 | - |
dc.relation.journalWebOfScienceCategory | Engineering, Chemical | - |
dc.relation.journalResearchArea | Engineering | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | TIO2 NANOWIRE ARRAYS | - |
dc.subject.keywordPlus | THERMAL-DECOMPOSITION | - |
dc.subject.keywordPlus | TITANIUM-DIOXIDE | - |
dc.subject.keywordPlus | ANATASE | - |
dc.subject.keywordPlus | NANOPARTICLES | - |
dc.subject.keywordPlus | SURFACE | - |
dc.subject.keywordPlus | OPTIMIZATION | - |
dc.subject.keywordPlus | FABRICATION | - |
dc.subject.keywordPlus | HYDROLYSIS | - |
dc.subject.keywordPlus | OXIDATION | - |
dc.subject.keywordAuthor | Carbonized coconut | - |
dc.subject.keywordAuthor | TiO2 | - |
dc.subject.keywordAuthor | Chemical vapor condensation | - |
dc.subject.keywordAuthor | Photocatalytic degradation | - |
dc.subject.keywordAuthor | Methylene blue | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.