Bio-applicable Ti-based Composites with Reduced Image Distortion Under High Magnetic Field

Authors
Kim, Sung-ChulKim, Yu-ChanSeok, Hyun-KwangYang, Seok-JoShon, In-JinLee, Kang-SikLee, Jae-Chul
Issue Date
2012-05
Publisher
KOREAN INST METALS MATERIALS
Citation
KOREAN JOURNAL OF METALS AND MATERIALS, v.50, no.5, pp.401 - 406
Abstract
When viewed using a magnetic resonance imaging (MRI) system, invasive materials inside the human body, in many cases, severely distort the MR image of human tissues. The degree of the MR image distortion increases in proportion not only to the difference in the susceptibility between the invasive material and the human tissue, but also to the intensity of the magnetic field induced by the MRI system. In this study, by blending paramagnetic Ti particles with diamagnetic graphite, we synthesized Ti100-xCx composites that can reduce the artifact in the MR image under the high-strength magnetic field. Of the developed composites, Ti70C30 showed the magnetic susceptibility of chi = 67.6 x 10(-6), which corresponds to 30% of those of commercially available Ti alloys, the lowest reported in the literature. The level of the MR image distortion in the vicinity of the Ti70C30 composite insert was nearly negligible even under the high magnetic field of 4.7 T. In this paper, we reported on a methodology of designing new structural materials for bio-applications, their synthesis, experimental confirmation and measurement of MR images.
Keywords
DIAMAGNETIC MATERIAL; SUSCEPTIBILITY; ARTIFACTS; DIAMAGNETIC MATERIAL; SUSCEPTIBILITY; ARTIFACTS; biomaterials; powder processing; magnetic properties; SEM; MR image artifact
ISSN
1738-8228
URI
https://pubs.kist.re.kr/handle/201004/129297
DOI
10.3365/KJMM.2012.50.5.401
Appears in Collections:
KIST Article > 2012
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE