Enhancement of the Hall Mobility in Hydrogen-ion-irradiated ZnO Films

Authors
Yeo, C. S.Chung, K. B.Park, J. S.Song, J. H.
Issue Date
2012-02
Publisher
KOREAN PHYSICAL SOC
Citation
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, v.60, no.3, pp.307 - 310
Abstract
RF-sputtered ZnO films were irradiated with hydrogen ions by using an ion accelerator at 110 keV. The physical and the electrical characteristics of the irradiated ZnO films were studied as functions of the hydrogen-ion irradiation dose. The Hall measurement indicated that the carrier concentration had small changes regardless of irradiated hydrogen amount, but the mobility was dramatically enhanced after irradiation of 10(15) atoms/cm(2). Even when the irradiated hydrogen dose was increased, the crystalline structure had no transformation and the composition was preserved. On the other hand, the electronic structure, measured by using X-ray absorption spectroscopy, exhibited a modification of the molecular orbital structure in the ZnO films irradiated at doses above 10(15) atoms/cm(2). These distortions of the molecular orbital in the conduction band could lead to a mobility enhancement without a structural transformation.
Keywords
ROOM-TEMPERATURE; TRANSPARENT; TRANSISTORS; DEFECTS; ROOM-TEMPERATURE; TRANSPARENT; TRANSISTORS; DEFECTS; ZnO film; Hydrogen; Ion irradiation; Hall mobility; Electronic structure
ISSN
0374-4884
URI
https://pubs.kist.re.kr/handle/201004/129589
DOI
10.3938/jkps.60.307
Appears in Collections:
KIST Article > 2012
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE