Electrochemical Properties of Binary Electrolytes for Lithium-sulfur Batteries
- Authors
- Kim, Hyung Sun; Jeong, Chang-Sik
- Issue Date
- 2011-10-20
- Publisher
- WILEY-V C H VERLAG GMBH
- Citation
- BULLETIN OF THE KOREAN CHEMICAL SOCIETY, v.32, no.10, pp.3682 - 3686
- Abstract
- The electrochemical properties of lithium-sulfur batteries with binary electrolytes based on DME and DOL: TEGDME and DOL mixed solvent containing LiClO4, LiTESI, and LiTF salts were investigated. The ionic conductivity of 1M LiTFSI and LiClO4 electrolytes based on TEGDME and DOL increased as the volume ratio of DOL solvent increased, because DOL effectively reduces the viscosity of the above electrolytes medium under the same salts concentration. The first discharge capacity of lithium-sulfur batteries in the DME and DOL-based electrolyte followed this order: LiTFSI (1,000 mAh/g) > LiTF (850 mAh/g) > LiClO4 (750 mAh/g). In case of the electrolyte based on TEGDME and DOL, the first discharge capacity of batteries followed this order: LiClO4 (1,030 mAh/g) > LiTF (770 mAh/g) > LiTFSI (750 mAh/g). The cyclic efficiency of lithium-sulfur batteries at 1M LiClO4 electrolytes is higher than that of batteries at other lithium salts-based electrolytes. Lithium-sulfur battery showed discharge capacity of 550 mAh/g until 20 cycles at all electrolytes based on DME and DOL solvent. By contrast, the discharge capacity of batteries was about 450 mAh/g at 1M LiTFSI and LiTF electrolytes based on TEGDME and DOL solvent after 20 cycles.
- Keywords
- PERFORMANCE; IMPROVEMENT; DISCHARGE; CATHODE; PERFORMANCE; IMPROVEMENT; DISCHARGE; CATHODE; Lithium-sulfur batteries; Binary electrolytes; Cyclic performances
- ISSN
- 0253-2964
- URI
- https://pubs.kist.re.kr/handle/201004/129876
- DOI
- 10.5012/bkcs.2011.32.10.3682
- Appears in Collections:
- KIST Article > 2011
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.