Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hong, Yu Jin | - |
dc.contributor.author | Bae, Soon Eon | - |
dc.contributor.author | Do, Sun Hee | - |
dc.contributor.author | Kim, Ik Hwan | - |
dc.contributor.author | Han, Dong Keun | - |
dc.contributor.author | Park, Kwideok | - |
dc.date.accessioned | 2024-01-20T16:04:17Z | - |
dc.date.available | 2024-01-20T16:04:17Z | - |
dc.date.created | 2021-09-05 | - |
dc.date.issued | 2011-10 | - |
dc.identifier.issn | 1598-5032 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/129923 | - |
dc.description.abstract | A cell-derived extracellular matrix (ECM) was naturally obtained and its effect on the induction of osteogenesis of bone marrow stromal cells (BMSCs) was investigated. Once porous composite scaffolds made of poly(L-lactic-co-glycolic acid) (PLGA), hydroxyapatite (HA), and beta-tricalcium phosphate (beta-TCP) were fabricated, these scaffolds were seeded with fibroblasts or preosteoblasts and cultured in vitro. They were then subjected to decellularization, resulting in fibroblasts-decellularized scaffolds (FDS) or preosteoblasts-decellularized scaffolds (PDS). Both fibronectin and type I collagen were clearly detected from the immunofluorescent staining of FDS and PDS, respectively. When the rabbit BMSCs-loaded scaffolds were cultured in the osteogenic medium for 4 weeks, the osteogenic potential of FDS and PDS was much greater than the PLGA/HA/beta-TCP (control), as identified by histological staining and the alkaline phosphatase (ALP) activity. Meanwhile, when BMSC-seeded FDS was implanted subcutaneously into the nude mice, the results also indicated more upregulated osteogenic differentiation of BMSCs in vivo compared to the control. This study suggests that the microenvironment created by cell-derived ECM can provide a favorable template in prompting the osteogenesis of BMSCs. | - |
dc.language | English | - |
dc.publisher | POLYMER SOC KOREA | - |
dc.subject | MESENCHYMAL STEM-CELLS | - |
dc.subject | EXTRACELLULAR-MATRIX | - |
dc.subject | DIFFERENTIATION | - |
dc.subject | GROWTH | - |
dc.subject | HEART | - |
dc.title | Decellularized PLGA-based scaffolds and their osteogenic potential with bone marrow stromal cells | - |
dc.type | Article | - |
dc.identifier.doi | 10.1007/s13233-011-1004-8 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | MACROMOLECULAR RESEARCH, v.19, no.10, pp.1090 - 1096 | - |
dc.citation.title | MACROMOLECULAR RESEARCH | - |
dc.citation.volume | 19 | - |
dc.citation.number | 10 | - |
dc.citation.startPage | 1090 | - |
dc.citation.endPage | 1096 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.description.journalRegisteredClass | kci | - |
dc.identifier.kciid | ART001584611 | - |
dc.identifier.wosid | 000294812500015 | - |
dc.identifier.scopusid | 2-s2.0-80052651596 | - |
dc.relation.journalWebOfScienceCategory | Polymer Science | - |
dc.relation.journalResearchArea | Polymer Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | MESENCHYMAL STEM-CELLS | - |
dc.subject.keywordPlus | EXTRACELLULAR-MATRIX | - |
dc.subject.keywordPlus | DIFFERENTIATION | - |
dc.subject.keywordPlus | GROWTH | - |
dc.subject.keywordPlus | HEART | - |
dc.subject.keywordAuthor | bone marrow stromal cells | - |
dc.subject.keywordAuthor | osteogenic differentiation | - |
dc.subject.keywordAuthor | extracellular matrix | - |
dc.subject.keywordAuthor | scaffold | - |
dc.subject.keywordAuthor | decellularization | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.