Optical properties and lasing of ZnO nanoparticles synthesized continuously in supercritical fluids

Authors
Han, Noh SooShim, Hyeong SeopSeo, Joo HeePark, Seung MinMin, Byoung KounKim, JaehoonSong, Jae Kyu
Issue Date
2011-03-21
Publisher
ELSEVIER
Citation
CHEMICAL PHYSICS LETTERS, v.505, no.1-3, pp.51 - 56
Abstract
Optical properties of zinc oxide (ZnO) nanoparticles prepared in supercritical methanol and supercritical water were investigated. Interstitial zinc and oxygen vacancy were the major defects in the ZnO nanoparticles synthesized in supercritical methanol. The addition of oleic acid as a surface modifier resulted in the isolation of the nanoparticles and the removal of interstitial zinc. Lasing was observed with sharp longitudinal modes and a superlinear increase in the emission intensity of the ZnO nanowires synthesized in supercritical water. The band gap renormalization due to the electron-hole plasma induced a red-shift in the emission band, whereas the individual longitudinal modes were blue-shifted due to a change in refractive index. (C) 2011 Elsevier B.V. All rights reserved.
Keywords
ZINC-OXIDE NANOPARTICLES; HYDROTHERMAL SYNTHESIS; NANORODS; PARTICLES; EMISSION; DYNAMICS; ZINC-OXIDE NANOPARTICLES; HYDROTHERMAL SYNTHESIS; NANORODS; PARTICLES; EMISSION; DYNAMICS; ZnO; supercritical fluids
ISSN
0009-2614
URI
https://pubs.kist.re.kr/handle/201004/130516
DOI
10.1016/j.cplett.2011.02.023
Appears in Collections:
KIST Article > 2011
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE