Effect of nanoclay on properties of porous PVdF membranes
- Authors
- Hwang, Hae-Young; Kim, Deuk-Ju; Kim, Hyung-Jun; Hong, Young-Taik; Nam, Sang-Yong
- Issue Date
- 2011-03
- Publisher
- ELSEVIER SCIENCE BV
- Citation
- TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, v.21, pp.S141 - S147
- Abstract
- The main requirements for battery separators are high porosity which can serve pathways of lithium ion and space for gel electrolytes to impregnate in a membrane and mechanical strength to allow easy handling for battery assembly. Generally, it appears the trade-off relationship between the porosity and mechanical strength of the membrane. PVdF composite membranes containing nano-size clays were used to improve the mechanical strength of the membrane without affecting the membrane porosity. The composite membranes were prepared by phase inversion method controlling the membrane preparation conditions such as retention time. The resultant membranes show increased mechanical properties with similar membrane porosity around 80 % compared to the pristine PVdF membrane. Incorporation of nonoclay can be considered as an effective method to improve the mechanical strength in porous membrane supports, especially in a separator.
- Keywords
- NYLON 6-CLAY HYBRID; ION BATTERIES; NANOCOMPOSITES; SEPARATORS; NYLON 6-CLAY HYBRID; ION BATTERIES; NANOCOMPOSITES; SEPARATORS; Li-ion battery; separator; poly(vinylidene fluoride); nanocomposite
- ISSN
- 1003-6326
- URI
- https://pubs.kist.re.kr/handle/201004/130617
- DOI
- 10.1016/S1003-6326(11)61078-9
- Appears in Collections:
- KIST Article > 2011
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.