Full metadata record

DC Field Value Language
dc.contributor.authorKim, J.-Y.-
dc.contributor.authorKim, B.-G.-
dc.contributor.authorChoi, S.-H.-
dc.contributor.authorPark, J.-G.-
dc.contributor.authorPark, J.-H.-
dc.date.accessioned2024-01-20T19:32:51Z-
dc.date.available2024-01-20T19:32:51Z-
dc.date.created2021-09-02-
dc.date.issued2010-04-
dc.identifier.issn1225-0562-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/131577-
dc.description.abstractRecently, one-dimensional semiconducting nanomaterials have attracted considerable interest for their potential as building blocks for fabricating various nanodevices. Among these semiconducting nanomaterials, SnO2 nanostructures including nanowires, nanorods, nanobelts, and nanotubes were successfully synthesized and their electrochemical properties were evaluated. Although SnO2 nanowires and nanobelts exhibit fascinating gas sensing characteristics, there are still significant difficulties in using them for device applications. The crucial problem is the alignment of the nanowires. Each nanowire should be attached on each die using arduous e-beam or photolithography, which is quite an undesirable process in terms of mass production in the current semiconductor industry. In this study, a simple process for making sensitive SnO2 nanowire-based gas sensors by using a standard semiconducting fabrication process was studied. The nanowires were aligned in-situ during nanowire synthesis by thermal CVD process and a nanowire network structure between the electrodes was obtained. The SnO2 nanowire network was floated upon the Si substrate by separating an Au catalyst between the electrodes. As the electric current is transported along the networks of the nanowires, not along the surface layer on the substrate, the gas sensitivities could be maximized in this networked and floated structure. By varying the nanowire density and the distance between the electrodes, several types of nanowire network were fabricated. The NO2 gas sensitivity was 30~200 when the NO2 concentration was 5~20ppm. The response time was ca. 30~110 sec.-
dc.languageKorean-
dc.subjectAU catalysts-
dc.subjectBuilding blockes-
dc.subjectDevice application-
dc.subjectFabrication process-
dc.subjectGas sensing characteristics-
dc.subjectGas sensitivity-
dc.subjectGas sensors-
dc.subjectIn-situ-
dc.subjectMass production-
dc.subjectNano-devices-
dc.subjectNano-materials-
dc.subjectNanowire networks-
dc.subjectNanowire synthesis-
dc.subjectNO2-
dc.subjectResponse time-
dc.subjectSemiconducting nanowires-
dc.subjectSemiconductor industry-
dc.subjectSi substrates-
dc.subjectSnO2-
dc.subjectSurface layers-
dc.subjectThermal CVD-
dc.subjectChemical sensors-
dc.subjectElectrochemical properties-
dc.subjectElectrodes-
dc.subjectGas detectors-
dc.subjectGas sensing electrodes-
dc.subjectGases-
dc.subjectNanobelts-
dc.subjectNanorods-
dc.subjectNanostructured materials-
dc.subjectNanotubes-
dc.subjectNanowires-
dc.subjectPhotolithography-
dc.subjectSubstrates-
dc.subjectElectric wire-
dc.titleSnO2 semiconducting nanowires network and its NO2 gas sensor application-
dc.typeArticle-
dc.identifier.doi10.3740/MRSK.2010.20.4.223-
dc.description.journalClass1-
dc.identifier.bibliographicCitationKorean Journal of Materials Research, v.20, no.4, pp.223 - 227-
dc.citation.titleKorean Journal of Materials Research-
dc.citation.volume20-
dc.citation.number4-
dc.citation.startPage223-
dc.citation.endPage227-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.identifier.kciidART001439516-
dc.identifier.scopusid2-s2.0-78649678709-
dc.type.docTypeArticle-
dc.subject.keywordPlusAU catalysts-
dc.subject.keywordPlusBuilding blockes-
dc.subject.keywordPlusDevice application-
dc.subject.keywordPlusFabrication process-
dc.subject.keywordPlusGas sensing characteristics-
dc.subject.keywordPlusGas sensitivity-
dc.subject.keywordPlusGas sensors-
dc.subject.keywordPlusIn-situ-
dc.subject.keywordPlusMass production-
dc.subject.keywordPlusNano-devices-
dc.subject.keywordPlusNano-materials-
dc.subject.keywordPlusNanowire networks-
dc.subject.keywordPlusNanowire synthesis-
dc.subject.keywordPlusNO2-
dc.subject.keywordPlusResponse time-
dc.subject.keywordPlusSemiconducting nanowires-
dc.subject.keywordPlusSemiconductor industry-
dc.subject.keywordPlusSi substrates-
dc.subject.keywordPlusSnO2-
dc.subject.keywordPlusSurface layers-
dc.subject.keywordPlusThermal CVD-
dc.subject.keywordPlusChemical sensors-
dc.subject.keywordPlusElectrochemical properties-
dc.subject.keywordPlusElectrodes-
dc.subject.keywordPlusGas detectors-
dc.subject.keywordPlusGas sensing electrodes-
dc.subject.keywordPlusGases-
dc.subject.keywordPlusNanobelts-
dc.subject.keywordPlusNanorods-
dc.subject.keywordPlusNanostructured materials-
dc.subject.keywordPlusNanotubes-
dc.subject.keywordPlusNanowires-
dc.subject.keywordPlusPhotolithography-
dc.subject.keywordPlusSubstrates-
dc.subject.keywordPlusElectric wire-
dc.subject.keywordAuthorGas sensor-
dc.subject.keywordAuthorNanowires-
dc.subject.keywordAuthorNO2-
dc.subject.keywordAuthorSnO2-
Appears in Collections:
KIST Article > 2010
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE