Full metadata record

DC Field Value Language
dc.contributor.authorShim, Jae Wan-
dc.contributor.authorGatignol, Renee-
dc.date.accessioned2024-01-20T19:33:10Z-
dc.date.available2024-01-20T19:33:10Z-
dc.date.created2021-09-02-
dc.date.issued2010-04-
dc.identifier.issn1539-3755-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/131593-
dc.description.abstractWe show that the heat exchange between fluid particles and boundary walls can be achieved by controlling the velocity change rate following the particles' collision with a wall in discrete kinetic theory, such as the lattice-gas cellular automata and the lattice Boltzmann method. We derive a relation between the velocity change rate and temperature so that we can control the velocity change rate according to a given temperature boundary condition. This relation enables us to deal with the thermal boundary whose temperature varies along a wall in contrast to the previous works of the lattice-gas cellular automata. In addition, we present simulation results to compare our method to the existing and give an example in a microchannel with a high temperature gradient boundary condition by the lattice-gas cellular automata.-
dc.languageEnglish-
dc.publisherAMER PHYSICAL SOC-
dc.subjectBOLTZMANN METHOD-
dc.subjectKINETIC-THEORY-
dc.subjectMODEL-
dc.subjectFLOW-
dc.subjectHYDRODYNAMICS-
dc.subjectFLUID-
dc.titleRobust thermal boundary conditions applicable to a wall along which temperature varies in lattice-gas cellular automata-
dc.typeArticle-
dc.identifier.doi10.1103/PhysRevE.81.046703-
dc.description.journalClass1-
dc.identifier.bibliographicCitationPHYSICAL REVIEW E, v.81, no.4-
dc.citation.titlePHYSICAL REVIEW E-
dc.citation.volume81-
dc.citation.number4-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000277265900080-
dc.identifier.scopusid2-s2.0-77951535825-
dc.relation.journalWebOfScienceCategoryPhysics, Fluids & Plasmas-
dc.relation.journalWebOfScienceCategoryPhysics, Mathematical-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusBOLTZMANN METHOD-
dc.subject.keywordPlusKINETIC-THEORY-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusFLOW-
dc.subject.keywordPlusHYDRODYNAMICS-
dc.subject.keywordPlusFLUID-
Appears in Collections:
KIST Article > 2010
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE