Full metadata record

DC Field Value Language
dc.contributor.authorKim, Byungchan-
dc.contributor.authorPark, Jooyoung-
dc.contributor.authorPark, Shinsuk-
dc.contributor.authorKang, Sungchul-
dc.date.accessioned2024-01-20T19:33:30Z-
dc.date.available2024-01-20T19:33:30Z-
dc.date.created2021-09-02-
dc.date.issued2010-04-
dc.identifier.issn1083-4419-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/131610-
dc.description.abstractCompared with their robotic counterparts, humans excel at various tasks by using their ability to adaptively modulate arm impedance parameters. This ability allows us to successfully perform contact tasks even in uncertain environments. This paper considers a learning strategy of motor skill for robotic contact tasks based on a human motor control theory and machine learning schemes. Our robot learning method employs impedance control based on the equilibrium point control theory and reinforcement learning to determine the impedance parameters for contact tasks. A recursive least-square filter-based episodic natural actor-critic algorithm is used to find the optimal impedance parameters. The effectiveness of the proposed method was tested through dynamic simulations of various contact tasks. The simulation results demonstrated that the proposed method optimizes the performance of the contact tasks in uncertain conditions of the environment.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.subjectREINFORCEMENT-
dc.subjectPARAMETERS-
dc.subjectTORQUE-
dc.titleImpedance Learning for Robotic Contact Tasks Using Natural Actor-Critic Algorithm-
dc.typeArticle-
dc.identifier.doi10.1109/TSMCB.2009.2026289-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, v.40, no.2, pp.433 - 443-
dc.citation.titleIEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS-
dc.citation.volume40-
dc.citation.number2-
dc.citation.startPage433-
dc.citation.endPage443-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000275665300013-
dc.identifier.scopusid2-s2.0-77949776001-
dc.relation.journalWebOfScienceCategoryAutomation & Control Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Cybernetics-
dc.relation.journalResearchAreaAutomation & Control Systems-
dc.relation.journalResearchAreaComputer Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusREINFORCEMENT-
dc.subject.keywordPlusPARAMETERS-
dc.subject.keywordPlusTORQUE-
dc.subject.keywordAuthorContact task-
dc.subject.keywordAuthorequilibrium point control-
dc.subject.keywordAuthorreinforcement learning-
dc.subject.keywordAuthorrobot manipulation-
Appears in Collections:
KIST Article > 2010
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE