Full metadata record

DC Field Value Language
dc.contributor.authorShim, Jae-Hyeok-
dc.contributor.authorKozeschnik, Ernst-
dc.contributor.authorJung, Woo-Sang-
dc.contributor.authorLee, Seung-Cheol-
dc.contributor.authorKim, Dong-Ik-
dc.contributor.authorSuh, Jin-Yoo-
dc.contributor.authorLee, Young-Su-
dc.contributor.authorCho, Young Whan-
dc.date.accessioned2024-01-20T19:35:07Z-
dc.date.available2024-01-20T19:35:07Z-
dc.date.created2021-09-02-
dc.date.issued2010-03-
dc.identifier.issn0364-5916-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/131687-
dc.description.abstractNumerical simulation of the long-term precipitate evolution in five different austenitic heat-resistant steels - NE709, Super304H, Sanicro25, CE8C-PLUS and HTUPS - has been carried out. MX and M23C6 are predicted to remain as major precipitates during long-term aging in these steels. While the average size of MX is maintained below several ten nanometers during the aging, that of M23C6 exceeds 100 urn after 100,000 h of aging at 700 degrees C. The addition of 3 wt% Cu produces very fine Cu-rich precipitates during aging in Super304H and Sanicro25. It is found that the amount of Z phase starts to increase remarkably between 1000 and 10,000 h of aging at the expense of MX precipitates in the steels containing a high nitrogen content. However, the growth rate of Z phase is relatively slow and its average size reaches at most a few ten nanometers after 100,000 h of aging at 700 degrees C, compared with 9%-12% Cr ferritic heat-resistant steels. The simulated precipitation sequence and precipitate size during aging are in general agreement with experimental observations. (C) 2010 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectMULTICOMPONENT MULTIPHASE SYSTEMS-
dc.subjectANGLE NEUTRON-SCATTERING-
dc.subjectSTAINLESS-STEELS-
dc.subjectIRREVERSIBLE-PROCESSES-
dc.subjectRECIPROCAL RELATIONS-
dc.subjectM23C6 PRECIPITATION-
dc.subjectKINETICS-
dc.titleNumerical simulation of long-term precipitate evolution in austenitic heat-resistant steels-
dc.typeArticle-
dc.identifier.doi10.1016/j.calphad.2010.01.001-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, v.34, no.1, pp.105 - 112-
dc.citation.titleCALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY-
dc.citation.volume34-
dc.citation.number1-
dc.citation.startPage105-
dc.citation.endPage112-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000276683100016-
dc.identifier.scopusid2-s2.0-77949271432-
dc.relation.journalWebOfScienceCategoryThermodynamics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaThermodynamics-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusMULTICOMPONENT MULTIPHASE SYSTEMS-
dc.subject.keywordPlusANGLE NEUTRON-SCATTERING-
dc.subject.keywordPlusSTAINLESS-STEELS-
dc.subject.keywordPlusIRREVERSIBLE-PROCESSES-
dc.subject.keywordPlusRECIPROCAL RELATIONS-
dc.subject.keywordPlusM23C6 PRECIPITATION-
dc.subject.keywordPlusKINETICS-
dc.subject.keywordAuthorHeat-resistant steel-
dc.subject.keywordAuthorAustenitic steel-
dc.subject.keywordAuthorPrecipitate-
dc.subject.keywordAuthorAging-
dc.subject.keywordAuthorNumerical simulation-
Appears in Collections:
KIST Article > 2010
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE