Full metadata record

DC Field Value Language
dc.contributor.authorChang, Wonyoung-
dc.contributor.authorChoi, Jung-Woo-
dc.contributor.authorIm, Jong-Choo-
dc.contributor.authorLee, Joong Kee-
dc.date.accessioned2024-01-20T20:02:16Z-
dc.date.available2024-01-20T20:02:16Z-
dc.date.created2021-09-05-
dc.date.issued2010-01-01-
dc.identifier.issn0378-7753-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/131790-
dc.description.abstractZnO-coated LiCoO2 particles are prepared by plasma-enhanced chemical vapour deposition (PE-CVD) in a coating range from 0.08 to 0.49 wt.%, and examined using field emission-scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and atomic absorption spectroscopy (AAS), with particular focus on surface characteristics. From charge-discharge cycling tests in the range of 3.0-4.5 V, the ZnO coating has little effect on the discharge capacity in the first few cycles, but the coating effectively improves the capacity retention after prolonged cycling. In the experimental range studied, the optimum amount of ZnO coating which maximizes the capacity retention is found to be 0.21 wt.%. An excessive amount of ZnO coating causes a decrease in both cyclic performance and thermal stability. The possible reasons for enhanced cycleability and thermal stability afforded by the ZnO coating are discussed from the viewpoint of the surface morphology of the bare and coated LiCoO2 particles and their impedance spectra. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.subjectINTERCALATION-
dc.subjectLIXCOO2-
dc.titleEffects of ZnO coating on electrochemical performance and thermal stability of LiCoO2 as cathode material for lithium-ion batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.jpowsour.2009.06.104-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF POWER SOURCES, v.195, no.1, pp.320 - 326-
dc.citation.titleJOURNAL OF POWER SOURCES-
dc.citation.volume195-
dc.citation.number1-
dc.citation.startPage320-
dc.citation.endPage326-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000272883200046-
dc.identifier.scopusid2-s2.0-69349085310-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusINTERCALATION-
dc.subject.keywordPlusLIXCOO2-
dc.subject.keywordAuthorLithium-ion batteries-
dc.subject.keywordAuthorCathode materials-
dc.subject.keywordAuthorZinc oxide coating-
dc.subject.keywordAuthorPlasma-enhanced chemical vapour deposition-
dc.subject.keywordAuthorCapacity retention-
dc.subject.keywordAuthorThermal stability-
Appears in Collections:
KIST Article > 2010
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE