Effects of impurities on the biodegradation behavior of pure magnesium

Authors
Lee, Ji-YoungHan, GilsooKim, Yu-ChanByun, Ji-YoungJang, Jae-ilSeok, Hyun-KwangYang, Seok-Jo
Issue Date
2009-12
Publisher
KOREAN INST METALS MATERIALS
Citation
METALS AND MATERIALS INTERNATIONAL, v.15, no.6, pp.955 - 961
Abstract
The corrosion behavior of pure magnesium that has different content ratio of impurities (such as Fe/Mn ratio) in Hanks' solution was investigated in order to tailor the lifetime of biodegradable implant made of pure magnesium. Two distinct stages of corrosion were observed: a slow corrosion rate stage and a subsequent fast corrosion rate stage. The first stage was characterized by uniform corrosion that produced magnesium hydroxide and calcium phosphate film on a magnesium surface, resulting in a slow corrosion rate. The second stage with an abrupt increase in the corrosion rate was induced by Fe precipitates and was stimulated by an increase in the Fe/Mn ratio. This corrosion was developed to a preferred crystallographic pitting corrosion where the pits propagated along the preferred crystallographic plane and several layers of Mg planes with narrow interplanar space remained uncorroded. From this study, it is expected that the lifetime of the biodegradable implant made of pure Mg can be tailored by controlling the amount and ratio of the impurities.
Keywords
CORROSION BEHAVIOR; ORTHOPEDIC IMPLANTS; CORONARY STENTS; ALLOYS; BONE; MECHANISMS; CHLORIDE; CORROSION BEHAVIOR; ORTHOPEDIC IMPLANTS; CORONARY STENTS; ALLOYS; BONE; MECHANISMS; CHLORIDE; pure magnesium; corrosion; biodegradation; impurity effect; preferred crystallographic pitting corrosion
ISSN
1598-9623
URI
https://pubs.kist.re.kr/handle/201004/131925
DOI
10.1007/s12540-009-0955-1
Appears in Collections:
KIST Article > 2009
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE