Strengthening of Nanosized bcc Cu Precipitate in bcc Fe: A Molecular Dynamics Study
- Authors
- Shim, Jae-Hyeok; Kim, Dong-Ik; Jung, Woo-Sang; Cho, Young Whan; Wirth, Brian D.
- Issue Date
- 2009-09
- Publisher
- JAPAN INST METALS
- Citation
- MATERIALS TRANSACTIONS, v.50, no.9, pp.2229 - 2234
- Abstract
- The strengthening effect of nanosized Cu precipitates in bcc Fe has been studied by performing molecular dynamics simulations of the interaction between a screw dislocation and a coherent bcc Cu precipitate of 1-4 mn diameter in bcc Fe. The dislocation detachment mechanism changes from shear at a precipitate diameter of 4 and 2.5 nm in the twinning and anti-twinning directions. respectively, due to the coherency loss caused by the screw dislocation assisted martensitic transformation of the precipitate. The screw dislocation detachment mechanism with the larger, transformed precipitates involves annihilation-and-renucleation, or Orowan looping in the twinning vs. anti-twinning direction. respectively. The critical resolved shear stress (CRSS) of the screw dislocation-precipitate interaction increases with increasing precipitate size, and is strongly dependent on the precipitate structure and detachment mechanism. The CRSS is much larger in the anti-twinning direction. [doi:10.2320/matertrans.M2009040]
- Keywords
- 111 SCREW DISLOCATION; ALPHA-IRON; COMPUTER-SIMULATION; STRUCTURAL-CHANGES; EDGE DISLOCATION; CORE STRUCTURE; ALLOY; CRYSTAL; SYSTEM; 111 SCREW DISLOCATION; ALPHA-IRON; COMPUTER-SIMULATION; STRUCTURAL-CHANGES; EDGE DISLOCATION; CORE STRUCTURE; ALLOY; CRYSTAL; SYSTEM; dislocation; precipitate; molecular dynamics simulation; critical resolved shear stress; martensitic transformation
- ISSN
- 1345-9678
- URI
- https://pubs.kist.re.kr/handle/201004/132209
- DOI
- 10.2320/matertrans.M2009040
- Appears in Collections:
- KIST Article > 2009
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.