Atomistic modeling of nanosized Cr precipitate contribution to hardening in an Fe-Cr alloy

Authors
Shim, Jae-HyeokKim, Dong-IkJung, Woo-SangCho, Young WhanWirth, Brian D.
Issue Date
2009-04-30
Publisher
ELSEVIER SCIENCE BV
Citation
JOURNAL OF NUCLEAR MATERIALS, v.386-88, pp.56 - 59
Abstract
Molecular dynamics simulations of the interaction between an edge dislocation and nanosized Cr precipitates in bcc Fe have been performed to investigate the hardening effect of alpha' phases in high Cr ferritic/martensitic steels. The critical resolved shear stress needed for an edge dislocation to overcome Cr precipitates of diameter between 3 and 6 nm is larger than for dislocation glide in the bcc Fe lattice containing 10% Cr solute atoms. This indicates that the precipitation of W phases leads to hardening in high Cr ferritic/martensitic steels. The MD simulations reveal that the interspacing of Cr precipitates plays a more crucial role in the hardening of Fe-Cr alloys than the precipitate size. An attractive interaction exists between an edge dislocation and nanosized Cr precipitates, which is evident as a decrease in total energy when an edge dislocation is placed within in a Cr precipitate. (c) 2008 Elsevier B.V. All rights reserved.
Keywords
IRON-CHROMIUM-ALLOYS; MARTENSITIC STEELS; SIMULATION; IRON-CHROMIUM-ALLOYS; MARTENSITIC STEELS; SIMULATION; Molecular dynamics; Irradiation; Nuclear reactor; Dislocation; Precipitate; Fe-Cr; Steel
ISSN
0022-3115
URI
https://pubs.kist.re.kr/handle/201004/132555
DOI
10.1016/j.jnucmat.2008.12.058
Appears in Collections:
KIST Article > 2009
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE