Vascular endothelial growth factor (VEGF) signaling regulates hippocampal neurons by elevation of intracellular calcium and activation of calcium/calmodulin protein kinase II and mammalian target of rapamycin
- Authors
- Kim, Byung Woo; Choi, Minee; Kim, Yong-Seok; Park, Hyungju; Lee, Hye-Ryeon; Yun, Chae-Ok; Kim, Eun Joo; Choi, June-Seek; Kim, Sunoh; Rhim, Hyewon; Kaang, Bong-Kiun; Son, Hyeon
- Issue Date
- 2008-04
- Publisher
- ELSEVIER SCIENCE INC
- Citation
- CELLULAR SIGNALLING, v.20, no.4, pp.714 - 725
- Abstract
- The present study was undertaken to characterize neuronal activity-dependent expression and release of vascular endothelial growth factor (VEGF) from rat hippocampal neurons and its contribution to neuronal functions. Increased levels of VEGF(164) mRNA were evident both in cultured neurons and slices, but not astrocytes, following membrane depolarization with KCl. Activity-dependent expression of VEGF, as well as its release, was dependent on the activation of the N-methyl-D-aspartate receptors or L-type voltage-activated calcium channels. A brief (10 min) application of recombinant VEGF 165 to neurons elicited a slow rise in cytosolic Ca2+ in a VEGFR2 dependent manner. The VEGF-induced Ca2+ responses required Ca2+ influx, phospholipase C gamma and Ca2+ stores. An inhibitor of transient receptor potential canonical channels reduced the VEGF-induced Ca2+ responses by 50%, suggesting the involvement of transient receptor potential canonical channels in the VEGF-mediated responses. The same brief stimulus with VEGF led to long-term synaptic enhancement dependent on protein synthesis. VEGF had prominent effects on the activation calcium/calmodulin protein kinase II and cAMP responsive element binding protein as we R as extracellular signal-regulated protein kinase and mammalian target of rapamycin-all in a VEGFR2 dependent manner. Our findings suggest that VEGF released from neuronal cells plays a local role in Ca2+ influx and synaptic transmission that may influence the generation of long-term changes in synaptic efficacy. (C) 2008 Published by Elsevier Inc.
- Keywords
- LONG-TERM-POTENTIATION; STIMULATES AXONAL OUTGROWTH; NEUROTROPHIC FACTOR; IN-VITRO; CELL PROLIFERATION; PROGENITOR CELLS; NERVOUS-SYSTEM; FACTOR GENE; NEUROGENESIS; RECEPTOR; LONG-TERM-POTENTIATION; STIMULATES AXONAL OUTGROWTH; NEUROTROPHIC FACTOR; IN-VITRO; CELL PROLIFERATION; PROGENITOR CELLS; NERVOUS-SYSTEM; FACTOR GENE; NEUROGENESIS; RECEPTOR; rat; hippocampus; VEGF; calcium
- ISSN
- 0898-6568
- URI
- https://pubs.kist.re.kr/handle/201004/133599
- DOI
- 10.1016/j.cellsig.2007.12.009
- Appears in Collections:
- KIST Article > 2008
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.