Directed assembly of fluidic networks by buckle delamination of films on patterned substrates

Authors
Moon, Myoung-WoonChung, SeokLee, Kwang-RyeolOh, Kyu HwanStone, Howard A.Hutchinson, John W.
Issue Date
2007-12
Publisher
CARL HANSER VERLAG
Citation
INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, v.98, no.12, pp.1203 - 1208
Abstract
A method to create networks of intricate fluidic channels formed from metals and ceramics is proposed and demonstrated. The method exploits buckle delamination of a thin compressed film bonded to a substrate. A low adhesion layer coinciding with the desired layout of the channel network is laid down prior to deposition of the film. Once triggered, the buckle delamination propagates along the low adhesion pathways driven by release of the elastic energy stored in the film, assembling the entire channel network without external intervention. Strips, tapered strips and a selection of grids are demonstrated for diamond-like carbon films bonded to Si substrates with gold providing low adhesion. Control of the film thickness (15 mn to 260 nm) and the width of the low adhesion regions (200 mn to microns) enables the cross-sectional area of the channel to be defined precisely with height determined by the buckle amplitude (40 nm to 500 nm). The channel network has been integrated with a microfluidic interface formed from polydimethylsiloxane. Pressure-driven flow of two miscible streams shows convectively enhanced mixing in these nanoscale buckled channels.
Keywords
COMPRESSED THIN-FILMS; DNA-MOLECULES; MICROCHANNEL; GOLD; NANOCHANNELS; STABILITY; COATINGS; RELEASE; DEVICES; WATER; COMPRESSED THIN-FILMS; DNA-MOLECULES; MICROCHANNEL; GOLD; NANOCHANNELS; STABILITY; COATINGS; RELEASE; DEVICES; WATER; buckling delamination; buckling patterning; nanochannel; fluidic channel
ISSN
1862-5282
URI
https://pubs.kist.re.kr/handle/201004/133946
DOI
10.3139/146.101585
Appears in Collections:
KIST Article > 2007
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE