Full metadata record

DC Field Value Language
dc.contributor.authorKim, Hyoungchul-
dc.contributor.authorKim, Jaehyun-
dc.contributor.authorYang, Hongjoo-
dc.contributor.authorSuh, Jeongsoo-
dc.contributor.authorKim, Taeyoung-
dc.contributor.authorHan, Bangwoo-
dc.contributor.authorKim, Sungwon-
dc.contributor.authorKim, Dae Seong-
dc.contributor.authorPikhitsa, Peter V.-
dc.contributor.authorChoi, Mansoo-
dc.date.accessioned2024-01-21T02:04:20Z-
dc.date.available2024-01-21T02:04:20Z-
dc.date.created2021-09-01-
dc.date.issued2006-11-
dc.identifier.issn1748-3387-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/134990-
dc.description.abstractThe development of nanodevices that exploit the unique properties of nanoparticles(1,2) will require high-speed methods for patterning surfaces with nanoparticles over large areas and with high resolution(3-6). Moreover, the technique will need to work with both conducting and non-conducting surfaces. Here we report an ion-induced parallel-focusing approach that satisfies all requirements. Charged monodisperse aerosol nanoparticles are deposited onto a surface patterned with a photoresist while ions of the same polarity are introduced into the deposition chamber in the presence of an applied electric field. The ions accumulate on the photoresist, modifying the applied field to produce nanoscopic electrostatic lenses that focus the nanoparticles onto the exposed parts of the surface. We have demonstrated that the technique could produce high-resolution patterns at high speed on both conducting (p-type silicon) and non-conducting ( silica) surfaces. Moreover, the feature sizes in the nanoparticle patterns were significantly smaller than those in the original photoresist pattern.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectGAS-PHASE-
dc.subjectCONTROLLED DEPOSITION-
dc.subjectPARTICLES-
dc.subjectBEAMS-
dc.subjectFLAME-
dc.titleParallel patterning of nanoparticles via electrodynamic focusing of charged aerosols-
dc.typeArticle-
dc.identifier.doi10.1038/nnano.2006.94-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNATURE NANOTECHNOLOGY, v.1, no.2, pp.117 - 121-
dc.citation.titleNATURE NANOTECHNOLOGY-
dc.citation.volume1-
dc.citation.number2-
dc.citation.startPage117-
dc.citation.endPage121-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000243902600013-
dc.identifier.scopusid2-s2.0-33947515567-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusGAS-PHASE-
dc.subject.keywordPlusCONTROLLED DEPOSITION-
dc.subject.keywordPlusPARTICLES-
dc.subject.keywordPlusBEAMS-
dc.subject.keywordPlusFLAME-
dc.subject.keywordAuthorNanoparticles-
dc.subject.keywordAuthorSurface Patterning-
dc.subject.keywordAuthorAerosol-
dc.subject.keywordAuthorNanopatterning-
dc.subject.keywordAuthorAerosol Charging-
dc.subject.keywordAuthorNanodevices-
Appears in Collections:
KIST Article > 2006
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE