Parallel patterning of nanoparticles via electrodynamic focusing of charged aerosols
- Authors
- Kim, Hyoungchul; Kim, Jaehyun; Yang, Hongjoo; Suh, Jeongsoo; Kim, Taeyoung; Han, Bangwoo; Kim, Sungwon; Kim, Dae Seong; Pikhitsa, Peter V.; Choi, Mansoo
- Issue Date
- 2006-11
- Publisher
- NATURE PUBLISHING GROUP
- Citation
- NATURE NANOTECHNOLOGY, v.1, no.2, pp.117 - 121
- Abstract
- The development of nanodevices that exploit the unique properties of nanoparticles(1,2) will require high-speed methods for patterning surfaces with nanoparticles over large areas and with high resolution(3-6). Moreover, the technique will need to work with both conducting and non-conducting surfaces. Here we report an ion-induced parallel-focusing approach that satisfies all requirements. Charged monodisperse aerosol nanoparticles are deposited onto a surface patterned with a photoresist while ions of the same polarity are introduced into the deposition chamber in the presence of an applied electric field. The ions accumulate on the photoresist, modifying the applied field to produce nanoscopic electrostatic lenses that focus the nanoparticles onto the exposed parts of the surface. We have demonstrated that the technique could produce high-resolution patterns at high speed on both conducting (p-type silicon) and non-conducting ( silica) surfaces. Moreover, the feature sizes in the nanoparticle patterns were significantly smaller than those in the original photoresist pattern.
- Keywords
- GAS-PHASE; CONTROLLED DEPOSITION; PARTICLES; BEAMS; FLAME; GAS-PHASE; CONTROLLED DEPOSITION; PARTICLES; BEAMS; FLAME; Nanoparticles; Surface Patterning; Aerosol; Nanopatterning; Aerosol Charging; Nanodevices
- ISSN
- 1748-3387
- URI
- https://pubs.kist.re.kr/handle/201004/134990
- DOI
- 10.1038/nnano.2006.94
- Appears in Collections:
- KIST Article > 2006
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.