Colossal electroresistance mechanism in a Au/Pr0.7Ca0.3MnO3/Pt sandwich structure: Evidence for a Mott transition
- Authors
- Kim, D. S.; Kim, Y. H.; Lee, C. E.; Kim, Y. T.
- Issue Date
- 2006-11
- Publisher
- AMER PHYSICAL SOC
- Citation
- PHYSICAL REVIEW B, v.74, no.17
- Abstract
- The resistive switching characteristics of Au/Pr0.7Ca0.3MnO3(PCMO)/Pt sandwich structure were investigated by changing growth temperature of the PCMO film, adding an oxygen annealing process, and modifying the Au/PCMO/Pt sandwich structure by inserting a PrMnO3 (PMO) or CaMnO3 (CMO) layer at the Au/PCMO interface. From these experiments, we obtained the following results. First, only crystalline PCMO films exhibited reversible resistive switching behavior in Au/PCMO/Pt sandwich structure. Secondly, the Mn4+/Mn3+ ratio at the PCMO surface was changed by oxygen annealing of the PCMO film, resulting in an increase of the resistance ratio of high resistance state and low resistance state. Lastly, we could not observe the resistive switching behavior in Au/PMO/PCMO/Pt and Au/CMO/PCMO/Pt sandwich structures. The resistive switching behavior could be observed only in Au/PCMO/PMO(or CMO)/PCMO/Pt sandwich structure. These results indicate that the resistive switching of Au/PCMO/Pt sandwich structure depends on the mixed valence state Mn4+/Mn3+ of Mn ions in the metal/PCMO interface domains. This result can be regarded as evidence for a Mott transition.
- Keywords
- THIN-FILMS; MANGANITES; INTERFACE; DISORDER; STRAIN; INTERFACE; DISORDER; STRAIN; THIN-FILMS; MANGANITES; Pr0.7Ca0.3MnO3 thin film; Au/PCMO/Pt structure; , Colossal electroresistance; Mott transition
- ISSN
- 2469-9950
- URI
- https://pubs.kist.re.kr/handle/201004/135004
- DOI
- 10.1103/PhysRevB.74.174430
- Appears in Collections:
- KIST Article > 2006
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.