Dominant surface stress driven by biomolecular interactions in the dynamical response of nanomechanical microcantilevers

Authors
Hwang, Kyo SeonEom, KilhoLee, Jeong HoonChun, Dong WonCha, Byung HakYoon, Dae SungKim, Tae SongPark, Jung Ho
Issue Date
2006-10-23
Publisher
AMER INST PHYSICS
Citation
APPLIED PHYSICS LETTERS, v.89, no.17
Abstract
Nanomechanical microcantilevers have played a vital role in detecting biomolecular interactions. The ability of microcantilevers to detect biomolecular interactions is ascribed to the principle that the surface stress, caused by biomolecular interactions, dominates the dynamical response of the microcantilever. Here we have experimentally studied the correlation between biomolecular interactions and the dynamical response of microcantilevers. Moreover, the authors employed a mechanical beam model to calculate the surface stress, representing the biomolecular interactions, through measuring the resonant frequency shift. The quantitative analysis of surface stress, driven by the specific protein-protein interactions, demonstrated that microcantilevers enable the quantitative study of biomolecular interactions. (c) 2006 American Institute of Physics.
Keywords
RESONANT-FREQUENCY SHIFT; C-REACTIVE PROTEIN; LABEL-FREE; CANTILEVER; MASS; RESONANT-FREQUENCY SHIFT; C-REACTIVE PROTEIN; LABEL-FREE; CANTILEVER; MASS; microcantilever; surface stress; dynamic response; nanomechanics
ISSN
0003-6951
URI
https://pubs.kist.re.kr/handle/201004/135019
DOI
10.1063/1.2372700
Appears in Collections:
KIST Article > 2006
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE