Surface modified Nafion((R)) membrane by ion beam bombardment for fuel cell applications

Authors
Cho, SACho, EAOh, IHKim, HJHa, HYHong, SAJu, JB
Issue Date
2006-04-21
Publisher
ELSEVIER SCIENCE BV
Citation
JOURNAL OF POWER SOURCES, v.155, no.2, pp.286 - 290
Abstract
The interfacial structure between an electrolyte membrane and an electrode catalyst layer plays an important role in determining performance of proton exchange membrane fuel cell (PEMFC) since the electrochemical reactions produce electricity occur on the interfaces that are in contact with hydrogen or oxygen gas, so-called three phase boundaries. To improve performance of the PEMFC by enlarging effective area of the interfaces, surface of Nafion((R)) 115 membrane was roughened by Ar+ ion beam bombardment before being coated with a catalyst ink to form the electrode layer. With increasing ion dose density from 0 to 1 x 10(17) ions cm(-2), roughness and hydrophobicity of the membrane surface increased, which could be favored for a high-performance PEMFC. In fuel cell tests, the single cell using Nafion((R)) membrane bombarded at an ion dose density of 10(16) ions cm(-2) exhibited maximum power density of 0.62 W cm(-2), which was two times higher than that of the single cell employing untreated Nafion((R)) 115 membrane, i.e. 0.30 W cm(-2). (c) 2005 Elsevier B.V. All rights reserved.
Keywords
Nafion((R)) membrane; ion beam bombardment; proton exchange membrane fuel cell (PEMFC); surface roughness; interfacial structure
ISSN
0378-7753
URI
https://pubs.kist.re.kr/handle/201004/135570
DOI
10.1016/j.jpowsour.2005.05.040
Appears in Collections:
KIST Article > 2006
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE