Design and fabrication of a largely deformable sensorized polymer actuator

Authors
Ryu, JPark, JKim, BPark, JO
Issue Date
2005-11-15
Publisher
ELSEVIER ADVANCED TECHNOLOGY
Citation
BIOSENSORS & BIOELECTRONICS, v.21, no.5, pp.822 - 826
Abstract
Polypyrrole (PPy), with its biomimetic properties such as high power density, large strain, and biocompatibility, is an excellent candidate for a biomimetic microactuator in microrobotics and bioengineering. A polyvinylidene fluorid (PVDF) sensor is also biocompatible, flexible, and chemically stable. Therefore, a PPy actuator is integrated with a PVDF sensor to realize a sensorized polymer actuator. A novel sensorized polymer actuator can accurately measure its bending motion precisely with real time. Experimental results demonstrate the feasibility of the sensorized polymer actuator. The polymer actuator can be actuated while it senses signals induced from the bending motion. In addition, the position of the sensorized polymer actuator can be controlled and adjusted precisely with feedback signals from its embedded sensor at the time of operation. If this system becomes more robust and reliable, its applications are promising and can be realized in cell handling, microrobotics, and microsurgery with the integration of standard microfabrication techniques. (c) 2005 Elsevier B.V. All rights reserved.
Keywords
POLYPYRROLE; POLYPYRROLE; polypyrrole; sensorized polymer actuator; polyvinylidene fluorid
ISSN
0956-5663
URI
https://pubs.kist.re.kr/handle/201004/135984
DOI
10.1016/j.bios.2005.01.019
Appears in Collections:
KIST Article > 2005
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE