Electrochemical regeneration of FAD by catalytic electrode without electron mediator and biochemical reducing power

Authors
JeonJin, SShin, IHSang, BIPark, DH
Issue Date
2005-04
Publisher
KOREAN SOC MICROBIOLOGY & BIOTECHNOLOGY
Citation
JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, v.15, no.2, pp.281 - 286
Abstract
We created a new graphite-Cu(II) electrode and found that the electrode could catalyze FADH, oxidation and FAD reduction coupled to electricity production and consumption, respectively. In a fuel cell with graphite-Cu(II) anode and graphite-Fe(III) cathode, the electricity was produced by coupling to the spontaneous oxidation of FADH,. Fumarate and xylose were not produced from the enzymatic oxidation of succinate and xylitol without FAD, respectively, but produced with FAD. The production of fumarate and xylose in the reactor with FAD electrochemically regenerated was maximally 2- 5 times higher than that in the reactor with FAD. By using this new electrode with catalytic function, a bioelectrocatalysts can be engineered; namely, oxidoreductase (e.g., lactate dehydrogenase) and FAD can function for biotransformation without an electron mediator and second oxidoreductase for cofactors recycling.
Keywords
ESCHERICHIA-COLI; FLAVIN; REDUCTASE; OXIDOREDUCTASE; FERMENTATION; PURIFICATION; ESCHERICHIA-COLI; FLAVIN; REDUCTASE; OXIDOREDUCTASE; FERMENTATION; PURIFICATION; electrochemical oxidoreduction of FADH(2) and FAD; graphite-Cu(II) electrode; succinate oxidation; xylitol oxidation; FADH(2) fuel cell
ISSN
1017-7825
URI
https://pubs.kist.re.kr/handle/201004/136609
Appears in Collections:
KIST Article > 2005
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE