AC frequency characteristics of coplanar impedance sensors as design parameters

Authors
Hong, JYoon, DSKim, SKKim, TSKim, SPak, EYNo, K
Issue Date
2005-01
Publisher
ROYAL SOC CHEMISTRY
Citation
LAB ON A CHIP, v.5, no.3, pp.270 - 279
Abstract
Glass-based microchannel chips were fabricated using photolithographic technology, and Pt thin-film microelectrodes, as coplanar impedance sensors, were integrated on them. Longitudinal design parameters, such as interelectrode spacing and electrode width, of coplanar impedance sensors were changed to determine AC frequency characteristics as design parameters. Through developing total impedance equations and modeling equivalent circuits, the dominant components in each frequency region were illustrated for coplanar impedance sensors and the measured results were compared with fitted values. As the ionic concentration increased, the value of the frequency-independent region decreased and cut-off frequencies increased. As the interelectrode spacing increased, cut-off frequencies decreased and total impedance increased. However, the width of each frequency-independent region was similar. As the electrode area increased, f(low) decreased but f(high) was fixed. We think that the decrease in R-Sol dominated over the influence of other components, which resulted in heightening f(low) and f(hig)h. The interelectrode spacing is a more significant parameter than the electrode area in the frequency characteristics of coplanar sensors. The deviation of experimentally obtained results from theoretically predicted values may result from the fringing effect of coplanar electrode structure and parasitic capacitance due to dielectric substrates. We suggest the guidelines of dominant components for sensing as design parameters.
Keywords
CONTACTLESS CONDUCTIVITY DETECTION; DOUBLE-LAYER CAPACITANCE; ROUGH METAL-SURFACE; CAPILLARY-ELECTROPHORESIS; ANALYSIS SYSTEMS; ELECTRODES; DEVICES; OPTIMIZATION; GLASS; SEPARATIONS; CONTACTLESS CONDUCTIVITY DETECTION; DOUBLE-LAYER CAPACITANCE; ROUGH METAL-SURFACE; CAPILLARY-ELECTROPHORESIS; ANALYSIS SYSTEMS; ELECTRODES; DEVICES; OPTIMIZATION; GLASS; SEPARATIONS; impedance sensor; fequency
ISSN
1473-0197
URI
https://pubs.kist.re.kr/handle/201004/136861
DOI
10.1039/b410325d
Appears in Collections:
KIST Article > 2005
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE